
Nuisance parameter estimation via honest random forest
Source:R/NuPa_honest_forest.R
NuPa_honest_forest.Rd
This function estimates different nuisance parameters using the honest random forest implementation of the 'grf' package
Usage
NuPa_honest_forest(
NuPa = c("Y.hat", "Y.hat.d", "Y.hat.z", "D.hat", "D.hat.z", "Z.hat"),
X,
Y = NULL,
D = NULL,
Z = NULL,
n_cf_folds = 5,
n_reps = 1,
cluster = NULL,
progress = FALSE,
...
)
Arguments
- NuPa
String vector specifying the nuisance parameters to be estimated. Currently supported:
c("Y.hat","Y.hat.d","Y.hat.z","D.hat","D.hat.z","Z.hat")
- X
Covariate matrix with N rows and p columns.
- Y
Optional numeric vector containing the outcome variable.
- D
Optional binary treatment variable.
- Z
Optional binary instrumental variable.
- n_cf_folds
Number of cross-fitting folds. Default is 5.
- n_reps
Number of repetitions of cross-fitting. Default is 1.
- cluster
Optional vector of cluster variable if cross-fitting should account for clusters.
- progress
If TRUE, progress of nuisance parameter estimation reported.
- ...
Options passed to the
regression_forest
.