A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills

Michael C. Knaus University of St. Gallen

Research questions

- What is the dose-response effect of making music on cognitive and non-cognitive skills of adolescents?
- How to integrate recently proposed Double Machine Learning (DML) into standard causal analysis in observational studies?
- How to investigate *sensitivity* of estimates to tuning parameter choices in the machine learning part?
- How to assess *covariate balancing* in high-dimensional settings?

Motivation

Topic:

- Recent interest in understanding the impact of extracurricular activities on skills
- Positive effects of musical practice per se found

Methodological:

- DML (Chernozhukov et al., 2018, Economet J)
 interesting option for causal inference in
 observational studies
- However, only illustrative applications in method contributions and *little guidance* for practitioners

Contribution

Topic:

- Investigation of dose-response relation between musical practice and skill development
- \bullet Observed parental tastes increase credibility of identification

Methodological:

- Proposal how to address two practically relevant issues:
- Systematic sensitivity analysis to the tuning parameter choice in the machine learning part
- Provide weighted representation of DML to check covariate balancing
- Implemented in R package dmlmt

Data

German National Educational Panel Study (NEPS)

- 6,000 students in the 9th grade
- Four intensities of $musical\ practice$ $\{no, low, medium, high\}$
- Objective and subjective cognitive skills, Big Five
- 377 student and parental background characteristics as control variables

Estimation

- Quantity of interest: average potential outcome, $\mu_t = E[Y^t]$, and average treatment effects, $\mu_t \mu_s$
- Estimated under conditional independence
 assumption using DML method of Farrell (2015,
 J Econometrics)
- $\sim 10,000$ potential controls
- Cross-validated Post-Lasso used for prediction
- Post-Lasso allows balancing checks using w_t from the weighted representation of the DML estimator

$$\hat{\mu}_t = \sum_{i=1}^N \left[\mu_t(X_i) + \frac{d_i^t(Y_i - \mu_t(X_i))}{p_t(X_i)} \right]$$

$$= \sum_{i=1}^N \left[Y_t(w_t^Y + w_t^p - w_t^{pY}) \right] = \sum_{i=1}^N \left[Y_t w_t \right]$$

- with treatment dummy d_i^t , conditional outcome $\mu_t(x)$, conditional treatment probability $p_t(x)$
- w_t^Y are weights of outcome prediction, w_t^p are IPW weights, $w_t^p Y$ are adjustment weights
- Cross-validation allows data-driven sensitivity analysis based on 1SE and 1SE+ rules

Figure 1: Representative example of cross-validation

Baseline results

Results for *binary music indicator* are in line with previous studies

Science	Math	Vocabulary	Reading	ICT
0.11***	0.08***	0.11***	-0.03	0.12**>
(0.02)	(0.02)	(0.02)	(0.03)	(0.02)

Grau	Grades (standardized)				
German	Math	Average			
0.12***	0.05*	0.09***			
(0.03)	(0.03)	(0.03)			

Big Five (standardized)

Extraversion	Agreeableness	Conscientiousness	Neuroticism	Openness
0.03	0.11***	-0.04	0.001	0.31***
(0.03)	(0.03)	(0.03)	(0.03)	(0.02)

The data allow to investigate further different intensities of musical practice:

Figure 2: Two examples of estimated potential outcomes

Main Result

- Positive effects on objectively measured skills require at least medium intensity
- Positive effects on German grades already for low intensity
- Results are not sensitive to the penalty choice
- The inclusion of < 30 variables suffices to achieve balancing of the high-dimensional covariates

Sensitivity analysis

Sensitivity to penalty term choice:

Figure 3: Representative example for sensitivity to penalty choice with binary music indicator

Balancing of all variables assessed via standardized differences

$$SD = \frac{|X_1 - X_0|}{\sqrt{(Var(X_1) + Var(X_0))/2}} \cdot 100$$

Figure 4: Balancing before (black) and after (grey) covariate adjustment

