
Essays in Empirical Economics using Microeconometric
and Causal Machine Learning Methods

Michael Knaus 

PEF Public Defense, 06.03.2018, St. Gallen



The «What if …?» questions

 What if this guy did something else?

2013



The «What if …?» questions

 What if this guy did something else?

now

Observed

2013



 What if this guy did something else?

2013

Observed

Counterfactual ?

The «What if …?» questions

now



The «What if …?» questions

 What if this guy did something else?

2013

Observed

Counterfactual ?

now



The «What if …?» questions

 It is impossible to observe the counterfactual on the individual 
level

⇒ The causal effect of different choices is not observed

 Goal of the analyses in this dissertation is to estimate at least 
average causal effects of

 Playing music (Ch. 1)

 Physical education (Ch. 2)

 Active labor market policy (Ch. 3)

 Job changes (Ch. 4)



Ingredients of causal analyses

 Identification: Arguments that the research design allows to
identify the causal effect of interest

 Requires institutional and contextual knowledge of the problem

 Involves untestable assumptions

 Estimation: Statistical techniques to estimate the causal effect
of interest

 Large and steadily increasing toolbox of methods

 Might require additional assumptions
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Microeconometrics vs. 
Causal Machine Learning

 Causal machine learning splits the estimation of causal effects 
into several prediction problems

 The predictions problems are then solved by standard or 
adapted machine learning tools

Microeconometrics Causal Machine Learning

Identification Same

Model selection
Manual (at least to some 
degree)

Data-driven

Statistical inference
God gave us the final
model

Accounts for the model 
selection step
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 Motivation: Understand the impact of extracurricular activities 
on cognitive and non-cognitive skills

 Contribution:
 Dose-response relation between musical practice and skill 

development

 Observed parental tastes increase credibility of identification

 Data: German National Educational Panel Study with ~7,000 9th

graders
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 Identification: Conditional independence assumption
 Detailed parental background

 Individual characteristics

 Estimation: Double Machine Learning (Farrell, 2015)

 Results:
 Improved cognitive skills for medium and high intensity

 Improved grades already for low intensity, mainly for German

 Agreeableness and openness in Big Five signficantly improved

Chapter 1: Intensity of Musical Practice and 
Youth Development
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 Motivation:
 Discussions about increasing physical education (PE)
 Scarce evidence regarding effect of regular PE on child development

 Contribution:
 Comprehensive analysis of all five domains of intended PE effects:
 Cognitive / non-cognitive / motor skills

 Extracurricular physical activity

 Health and fitness

 Data: German Motorik-Modul with ~5,500 observations
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 Identification: Instrumental variable
 Exploit variation in PE requirements across federal states

 Estimation: Semi-parametric IV using Inverse Probability Tilting

 Results:
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 Motivation: Estimate conditional average treatment effects
(CATEs) of job search programmes

 Research questions:
 Do "causal machine learning" methods provide useful tools to 

uncover heterogeneous causal effects in policy evaluations?

 Did Swiss job search programmes have differential effects for 

different groups of unemployed?

 Data: Administrative data of Swiss unemployed and caseworkers

Chapter 3: Heterogeneous Employment Effects of Job 
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 Identification: Conditional independence assumption
 Detailed unemployed and caseworker characteristics

 Estimation: Modified Covariate Method (Tian et al., 2014) and
several alternatives

 Results:
 On average substantial lock-in effects of the programme

 Substantial heterogeneity detected behind standard average effects

 Assignment mechanisms fail to identify individuals with gains

Chapter 3: Heterogeneous Employment Effects of Job 
Search Programmes: A Machine Learning Approach



Chapter 4: Work Hour Mismatch and Job Mobility: 
Adjustment Channels and Resolution Rates

EstimationIdentification

Micro-
econometrics

Conditional
independence

Instrumental 
variables

Causal Machine
Learning

with Steffen Otterbach 



 Motivation:
 Existing literature interprets increased work hour flexibility of job 

movers as evidence for free hour choice across jobs
 Suggests that job movers can resolve work hour mismatches

 Contribution:
 Comprehensive analysis including actual resolution of work hour 

mismatch in the analysis

 Data: German Socio-Economic Panel providing rare measure of 
desired work hours in numbers

Chapter 4: Work Hour Mismatch and Job Mobility: 
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 Identification: Conditional independence assumption
 Detailed socio-demographic, job-related, and regional information

 Estimation: Propensity score matching with bias adjustment

 Results:
 Confirm previous finding of larger adjustments in actual work hours

 Job mobility only moderately increases the probability to resolve

work hour mismatches

Chapter 4: Work Hour Mismatch and Job Mobility: 
Adjustment Channels and Resolution Rates



 Machine learning adds new interesting options to the causal 

analysis toolbox

 However, it does not solve the fundamental identification problem 

that counterfactuals are unobserved

 Still, ML can be used to create hypothetical counterfactuals

Concluding remarks
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