

## **Research** questions

- What is the *dose-response effect* of making *music* on cognitive and non-cognitive skills of adolescents?
- How to *integrate* recently proposed *Double* Machine Learning (DML) into standard causal analysis in *observational studies*?
- How to investigate *sensitivity* of estimates to tuning parameter choices in the machine learning part?
- How to assess *covariate balancing* in high-dimensional settings?

# Motivation

## Topic:

- Recent interest in understanding the impact of extracurricular activities on skills
- Positive effects of musical practice per se found

Methodological:

- DML (Chernozhukov et al., 2018, Economet J) *interesting option* for causal inference in observational studies
- However, only illustrative applications in method contributions and *little guidance* for practitioners

# Contribution

## Topic:

- Investigation of *dose-response* relation between musical practice and skill development
- Observed parental tastes increase *credibility* of identification

Methodological:

- Proposal how to address two *practically relevant* issues:
- Systematic *sensitivity analysis* to the *tuning* parameter choice in the machine learning part
- Provide *weighted representation* of DML to check covariate balancing
- Implemented in R package dmlmt

# **A Double Machine Learning Approach to Estimate the** Effects of Musical Practice on Student's Skills

Michael C. Knaus University of St. Gallen

| Data                                                                                                     | <b>Baseline results</b>                                                                                     |                 |                   |               |            |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------|-------------------|---------------|------------|
| <ul><li>German National Educational Panel Study (NEPS)</li><li>6,000 students in the 9th grade</li></ul> | Results for <i>binary music indicator</i> are in line with previous studies Cognitive Skills (standardized) |                 |                   |               |            |
|                                                                                                          |                                                                                                             |                 |                   |               |            |
| $\{no, low, medium, high\}$                                                                              | 0.11***                                                                                                     | 0.08***         | 0.11***           | -0.03         | 0.12***    |
| • Objective and subjective cognitive skills, Big Five                                                    | (0.02)                                                                                                      | (0.02)          | (0.02)            | (0.03)        | (0.02)     |
| - 377 student and parental background characteristics as control variables                               | Grades (standardized)                                                                                       |                 |                   |               |            |
|                                                                                                          |                                                                                                             | German          | Math              | Average       |            |
|                                                                                                          |                                                                                                             | 0.12***         | 0.05*             | 0.09***       |            |
|                                                                                                          |                                                                                                             | (0.03)          | (0.03)            | (0.03)        |            |
| Estimation                                                                                               | Big Five (standardized)                                                                                     |                 |                   |               |            |
|                                                                                                          | Extraversior                                                                                                | n Agreeableness | Conscientiousness | 8 Neuroticism | n Openness |
|                                                                                                          | 0.03                                                                                                        | 0.11***         | -0.04             | 0.001         | 0.31***    |

- Quantity of interest: average potential outcome,  $\mu_t = E[Y^t]$ , and average treatment effects,  $\mu_t - \mu_s$
- Estimated under *conditional independence* assumption using DML method of Farrell (2015, J Econometrics)
- $\sim 10,000$  potential controls
- Cross-validated Post-Lasso used for prediction
- Post-Lasso allows balancing checks using  $w_t$  from the weighted representation of the DML estimator

$$\hat{\mu}_{t} = \sum_{i=1}^{N} \left[ \mu_{t}(X_{i}) + \frac{d_{i}^{t}(Y_{i} - \mu_{t}(X_{i}))}{p_{t}(X_{i})} \right]$$
$$= \sum_{i=1}^{N} \left[ Y_{t}(w_{t}^{Y} + w_{t}^{p} - w_{t}^{pY}) \right] = \sum_{i=1}^{N} \left[ Y_{t}w_{t} \right]$$

- with treatment dummy  $d_i^t$ , conditional outcome  $\mu_t(x)$ , conditional treatment probability  $p_t(x)$
- $w_t^Y$  are weights of outcome prediction,  $w_t^p$  are IPW weights,  $w_t^p Y$  are adjustment weights
- Cross-validation allows data-driven sensitivity analysis based on 1SE and 1SE+ rules



Figure 1: Representative example of cross-validation

(0.03)

(0.03)

The data allow to investigate further *different intensities* of musical practice:

(0.03)

(0.03)

(0.02)







# Main Result

• Positive effects on *objectively measured skills* require at least medium intensity

• Positive effects on *German grades* already for low intensity

• Results are *not sensitive* to the *penalty choice* • The inclusion of < 30 variables suffices to achieve balancing of the high-dimensional covariates



Balancing of all variables assessed via standardized differences

![](_page_0_Figure_52.jpeg)

adjustment

![](_page_0_Picture_54.jpeg)

![](_page_0_Picture_55.jpeg)

# Sensitivity analysis

Figure 3: Representative example for sensitivity to penalty choice with binary music indicator

Figure 4: Balancing before (black) and after (grey) covariate

Swiss Institute for Empirical Economic Research

![](_page_0_Picture_60.jpeg)