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1 Introduction 

The relevance of cognitive and non-cognitive skills for success at school and in the labor market is 

well established (Kautz, Heckman, Diris, Weel, & Borghans, 2014). Development of these skills is 

therefore of fundamental individual, economic and societal importance. Besides schools and 

families as the main drivers of human capital accumulation of children, the economic literature on 

child development shows a recent interest in understanding the role of extracurricular activities like 

sports or music (Cabane, Hille, & Lechner, 2016; Felfe, Lechner, & Steinmayr, 2016; Hille & 

Schupp, 2015). Previous evidence suggests that engagement in these extracurricular activities has 

positive effects on at least some measureable cognitive and non-cognitive skills.1  

The effects in previous studies are identified using the conditional independence assumption 

(CIA) that demands usually a large set of control variables to be plausible.2 Such analyses are a 

workhorse for empirical economists to identify causal parameters like average treatment effects in 

observational studies. The estimation of these parameters requires to specify which variables should 

enter the analysis and usually also in which functional form (see for a review, e.g., Imbens & 

Wooldridge, 2009). Economic theory and existing empirical evidence can be used to identify 

categories of variables that are needed to make the CIA plausible. For instance, parental background 

clearly needs to be controlled for in the case of musical engagement. However, proceeding this way 

tells us nothing about which variables account best for parental background and in what functional 

form these variables should enter the analysis. A set of potential controls that allows for polynomials 

and interactions easily leads to a setting where the set of potential controls exceeds the number of 

observations. Standard methods are not feasible in this case. The strength of so-called machine 

learning tools is to deal with such high-dimensional settings. The recently introduced framework of 

double machine learning (Chernozhukov, Chetverikov, et al., 2018) can thus provide substantial 

                                                                 
1 These findings are in line with results in neuroscience and sociology (e.g., Bergman Nutley et al., 2014; Eccles et al., 2003). 
2 This identification assumption is also known as unconfoundedness, exogeneity or selection on observables assumption. 
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gains in such applications. Double machine learning offers an objective and data-driven way to 

control for confounding in observational studies. The idea is that, given the CIA holds, the 

estimation of causal effects can be split into separate prediction problems. The machine learning 

literature developed a variety of methods that are very successful in high-dimensional prediction 

problems (see for an overview, e.g., Hastie, Tibshirani, & Friedman, 2009). Double machine 

learning allows researchers to utilize these powerful prediction methods for causal analysis and to 

conduct valid statistical inference after model selection.3 

The analyses in this paper apply double machine learning to estimate the effects of different 

intensities of musical practice on youth development. This is novel as previous studies consider 

only being extracurricularly active per se and are silent about the intensity of activities. Cabane et 

al. (2016) is the only study that accounts for the intensity of activities in some way by distinguishing 

between sports and competitive sports. Evidence with respect to the intensity of playing music is 

missing so far. Existing analyses pool observations with low and high intensity either because 

intensity is not observed or the number of observations in the available intensity levels is too small 

for credible inference (Cabane et al., 2016; Hille & Schupp, 2015). However, shedding light on the 

dose-response relation of playing music has important implications for individuals, parents and 

policymakers. It allows to answer at least two important questions: (i) Which level of engagement 

is required to generate the observed gains? (ii) Is more always better or does very intense musical 

practice harm human capital accumulation by crowding out other productive activities? The 

detailed information in the German National Economic Panel Study (NEPS) (Blossfeld, Roßbach, 

& von Maurice, 2011) provides a unique opportunity to answer these questions. It contains different 

intensities measured as days per month making music. The NEPS data provide standardized 

measures of cognitive skills, school grades and measures of the Big Five as non-cognitive skills as 

outcomes of interest. Further, the availability of a variety of individual, parental, and family 

                                                                 
3 See Athey (2018) for a broad overview how machine learning might be used in economic analysis beyond the estimation of average 

treatment effects. 
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information allows a credible identification using the CIA. Especially the exceptionally detailed 

measures of parental cultural preferences make the identification using CIA more credible 

compared to previous studies. 

This paper contributes to two strands of literature. First, it adds to the literature about 

extracurricular activities and youth development by investigating a potential dose-response relation 

between musical practice and cognitive and non-cognitive skills. The very detailed parental 

information regarding cultural preferences allow a more credible identification compared to 

previous studies. Second, the paper contributes to the young causal machine learning literature. It 

is, to the best knowledge of the author, the first paper that applies a double machine learning 

estimator for average treatment effects in an empirical application. While the idea of double 

machine learning triggered a variety of methodological contributions,4 applications that are not run 

for expository purposes in these contributions are missing so far. This is problematic as Athey 

(2018) predicts that also empiricists will adapt these new methods at a large scale. The literature is 

currently lacking papers that show how applied empirical practice and standards can be fruitfully 

combined with these new methods. This paper provides a first step in this direction. Specifically, it 

builds on the estimator proposed by Farrell (2015) for average treatment effects with multivalued 

treatments, which falls under the more general framework of double machine learning. In the 

absence of any established procedures for applications, the paper addresses two practically 

important questions: (i) How can we assess sensitivity of our estimators to tuning parameter 

choices? Such tuning parameter choices are at the core of any machine learning algorithm and 

control model complexity. Out-of-sample prediction quality does heavily depend on these choices. 

The same might be suspected when using these predictions for causal inference. This paper 

proposes a data-driven assessment that is inspired by the one standard error rule (1SE), which goes 

back to Breiman, Friedman, Stone and Olshen (1984). (ii) How can we check covariate balancing 

                                                                 
4 Recent examples being Antonelli and Dominici (2018), Athey and Wager (2017), Chernozhukov, Goldman, Semenova, and Taddy 

(2017), Chernozhukov, Newey, and Robins (2018), Luo and Spindler (2017) and Mackey, Syrgkanis and Zadik (2017). 
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of the estimator? Such balancing checks are standard for estimators based on the propensity score 

(see, e.g., Lee, 2013). This paper shows how a weighted representation of double machine learning 

methods can be used to assess covariate balancing. 

The results show that statistically significant improvements in objectively measured cognitive 

skills require at least medium intensity of practice, which means 8 to 22 days making music per 

month. However, improvements in school grades are already observed for low intensity practice 

with at least one day engaging in musical activities per month. Using the Big Five as a measure of 

non-cognitive skills, we find significant improvements of agreeableness and openness. The results 

are robust to different choices of the tuning parameter in the machine learning part. 

The paper proceeds as follows. The next section provides a brief overview of the previous 

literature on model selection for causal analysis and the literature leading to double machine 

learning. Section 3 describes the NEPS data. Section 4 discusses identification via CIA and the 

chosen double machine learning estimator. Section 5 provides the results and section 6 concludes. 

Appendices A to E provide additional material. The accompanying R package dmlmt and an 

illustrative example building on Chernozhukov, Hansen and Spindler (2016) are provided at 

https://github.com/MCKnaus/dmlmt.  

2 Literature review 

The double machine learning methodology to estimate average treatment effects is a rather 

recent development. This subsection gives a brief overview of the related literature and refers the 

interested reader to the original papers for the technical details. 

Most practically relevant estimators based on the CIA require to specify a model for the 

conditional expectation of the outcome, for the conditional treatment probability (propensity score) 

or for both. However, the literature provides little guidance for researchers on how to conduct 

proper model selection. This is problematic because the number of potential variables can easily 

exceed the number of observations if researchers include interactions and polynomials of the base 

https://github.com/MCKnaus/dmlmt
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variables. Hirano and Imbens (2001) propose a systematic way of model selection by keeping only 

variables that are statistically significant at a pre-determined level in the outcome or propensity 

score model. However, this is not feasible for a high-dimensional set of potential controls. An 

alternative for propensity score based methods proceeds by iteratively adding interactions terms 

and polynomials to the propensity model until the covariate distributions in treatment and control 

groups are considered as balanced (Dehejia & Wahba, 1999, 2002; Rosenbaum & Rubin, 1984). 

Other approaches apply machine learning techniques to flexibly estimate the propensity score (B. 

K. Lee, Lessler, & Stuart, 2010; McCaffrey, Ridgeway, & Moral, 2004; Wyss et al., 2014). These 

methods conduct standard statistical inference that ignores the model selection step. All the 

reviewed approaches can be problematic for two related reasons. First, Leeb and Pötscher (2005, 

2008) show that such “post-model-selection estimators” might lead to invalid statistical inference. 

They note that estimators after model selection are not uniformly consistent. However, uniform 

consistency is necessary to use asymptotic properties of estimators as approximations in finite 

samples. As a consequence, statistical inference that ignores the model selection step in finite 

samples can be misleading. The second problem arises when either only the outcome or only the 

propensity score model is considered in the model selection step. Belloni, Chernozhukov and 

Hansen (2014a, 2014b) illustrate how these “single-equation approaches” can fail to provide valid 

statistical inference. This problem arises because the CIA requires to control for variables that affect 

the treatment probability and the outcome. Model selection that is only based on one of the two 

might miss variables that have a small coefficient in the considered but a large coefficient in the 

other model. As a consequence, single equation approaches might fail to control for relevant 

confounders and can be biased.  

Belloni et al. (2014b) and Farrell (2015) offer a constructive solution to both problems. Their 

approaches build on Hahn’s (1998) efficient score for average treatment effects.5 In this setting, the 

conditional expectations of the outcome and the propensity score serve as potentially high-

                                                                 
5 For a detailed discussion of the connections to semiparametric theory, see Zimmert (2018). 
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dimensional nuisance parameter. The goal is then to use machine learning tools that provide high-

quality approximations of these nuisance parameters.6 The combination of efficient score and high-

quality prediction methods allows Belloni et al. (2014b) and Farrell (2015) to provide uniformly 

valid inference also after model selection. This is achieved by considering model selection as high-

quality approximation of all nuisance parameters instead of perfect variable selection in either 

outcome or propensity score model.  

Belloni, Chernozhukov, Fernández-Val, and Hansen (2017) generalize these ideas to all 

parameters that are identified via moment conditions that satisfy the Neyman orthogonality 

condition (Neyman, 1959). Such moment conditions are immune to small errors in the 

approximation of the nuisance parameters. Chernozhukov et al. (2018, 2017) call this approach 

double machine learning and discuss how a variety of machine learning algorithms can be applied 

for causal inference in this framework. However, applications using these methods are missing so 

far and practical issues need still to be investigated. 

3 Data 

3.1 National Educational Panel Study 

The empirical analysis is based on the German National Educational Panel Study (NEPS). 

The NEPS is set up as a large panel study and covers six cohorts starting at different points of the 

life cycle (Blossfeld et al., 2011). This study is based on starting cohort four of the NEPS. The first 

wave of this cohort was conducted in autumn 2010 with 15,577 students in the 9th grade. The 

sampling of 9th graders followed a two-step approach and was school-based. In a first step, a random 

sample of schools was drawn. In a second step, two classes of the 9th grade were randomly selected, 

if available (von Maurice, Sixt, & Blossfeld, 2011). The survey and tests were conducted in 

classrooms. Afterwards, parents were surveyed in telephone interviews. 

                                                                 
6 A discussion what high-quality approximation means and the required sparsity assumptions is provided in Section 4.2. 
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The cohort of 9th graders is particularly well-suited for the research question at hand because 

they were exclusively and extensively asked about their extracurricular activities including intensity 

of musical practice (Frahm et al., 2011). Furthermore, this cohort is of particular interest, since in 

Germany students in the 9th grade have to decide whether they continue school to follow the 

academic track or start an apprenticeship. Therefore, differences in skills at this point might have 

long-lasting effects over the life cycle. 

The number of observations available for the analysis is 6,898. Table A.1 of Appendix A 

provides details about the sample selection. It shows two major reasons for dropping more than half 

of the sample. The first and most severe one is non-response of parents to the telephone interview. 

As detailed parental background information is of utter importance for the identification via the 

CIA, observations without parental information are discarded. The second major reason for 

omitting observations is non-response to the measure of musical practice. This is mainly driven by 

special needs schools where this question was not asked. Such schools teach adolescents with 

learning disabilities. The analysis is therefore restricted to children without learning disabilities.7 

The outcome variables in this analysis can be divided into cognitive and non-cognitive skills. 

The measures of domain-specific cognitive skills are obtained from standardized tests in math, 

reading literacy, information and communication technology (ICT) literacy, and language 

proficiency (vocabulary test) (Artelt, Weinert, & Carstensen, 2013). Further, self-reported German 

and math grades can be used to assess whether potential differences in the objectively measured 

skills are also mirrored in the more subjective evaluation by teachers. Non-cognitive skills are 

assessed by using the Big Five measures of personality traits: extraversion, agreeableness, 

conscientiousness, neuroticism, and openness (McCrae & Costa, 1999).  

The strategy based on the CIA described below requires a large set of background 

characteristics to serve as control variables. The NEPS provides very detailed information in the 

                                                                 
7 This could be problematic if musical practice changes the probability of developing learning disabilities, which cannot be ruled 

out completely.  
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individual and parental questionnaire from where we extract 377 potential base control variables.8 

They contain individual characteristics, parental preferences for leisure activities, parental work, 

household economic conditions, parenting attitudes, household demographics, home possessions, 

information about social circle of parents, and regional information. 

3.2 Measurement of music intensity 

Cohort four of the NEPS data provides a measure for the intensity of musical activities. 

Students are asked the following question: “On how many days in the last month have you made 

music, e.g. played an instrument or sung in a choir? Making music on the computer does not count. 

On about …”. The number of days that are reported serve as our measure of intensity. Figure 1 

shows the distribution of the answers for all students (left) and those that report a positive number 

of music days (right). The left graph shows that the majority (52%) reports no musical practice in 

the previous month. 

Figure 1: Distribution of reported days with musical practice in month before interview 

 

Note: The left graph shows the frequencies in the full sample and the right graph only for those reporting at least one day of 
musical practice in the last month. 

                                                                 
8 A detailed description of the considered variables and how they are coded is provided in Table A.2 of Appendix A. 
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Two features of the intensity measure require additional discussion and have implications for 

the analysis and interpretation of the results. The first obvious feature is the rounding pattern at 

steps of five and especially at steps of ten. Such rounding is frequently observed in surveys when 

people are asked to recall past frequencies. The analysis is therefore based on discretized intensity 

measures because the continuous measure might be affected by systematic measurement error and 

because precision for values between the peaks would be low due to very few observations for these 

values. The intensity measure is split into four categories for student i depending on the reported 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖:9 

𝐼𝐼𝑚𝑚𝑚𝑚𝐼𝐼𝑚𝑚𝑑𝑑𝐼𝐼𝑚𝑚𝑑𝑑𝑖𝑖
⎩
⎨

⎧
𝑁𝑁𝑚𝑚𝑖𝑖        if  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖 = 0          
𝐿𝐿𝑚𝑚𝐿𝐿𝑖𝑖     if  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖 ∈ [1,7]    
𝑀𝑀𝐼𝐼𝑑𝑑𝑖𝑖    if  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖 ∈ [8,22] 
𝐻𝐻𝐼𝐼𝐻𝐻ℎ𝑖𝑖   if  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖 > 22       

                              (1) 

Further, we define a binary indicator 𝐴𝐴𝑚𝑚𝑑𝑑𝑖𝑖 being one for any positive intensity. As such binary 

indicators were used in previous studies, we want to check how our findings compare to their results 

based on a binary indicator before investigating different intensities. 

The second feature that needs to be discussed is the relatively large number of students that 

are musically active compared to other German studies measuring musical activity in the SOEP 

(Cabane et al., 2016; Hille & Schupp, 2015). 48% of the on average 15-year-old respondents report 

practicing music at least once per month and are considered at least active at a low intensity in the 

NEPS. In contrast, only 24% of the 17 year old SOEP individuals report practicing music without 

further restrictions (Hille & Schupp, 2015). The main explanation for this large difference is the 

different wording in the SOEP asking “Do you play a musical instrument or pursue singing 

seriously?”. Students in the lower part of the intensity distribution of Figure 1 would answer this 

question most likely also with “no” because of the word “seriously” in the SOEP question.  

                                                                 
9 Also indicated by the black lines in Figure 1. The splits are placed in the middle of steps of five assuming that students round to 

the next step of five. The active students are divided in three categories of similar size to facilitate the interpretation of the 
estimated parameters. Specifications with more or alternative categories are very similar to those presented later but the large 
number of estimated parameters makes the interpretation very cumbersome. 
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Table 1: Description of extracurricular activities of students by different intensity levels 

    No   Music 

  music   Any  Low Medium High 
Days/month musical practice 0.00  14.90  3.56 14.48 28.35 
Taking music lessons at music school 0.03  0.47  0.21 0.52 0.68 
Other extracurricular activities:        
 Sports club 0.65  0.68  0.69 0.70 0.67 
 Voluntary relief organizations 0.11  0.12  0.11 0.12 0.12 
 Religious youth groups 0.13  0.30  0.24 0.33 0.34 
 Fan clubs 0.12  0.09  0.10 0.08 0.09 
 Culture clubs 0.04  0.26  0.14 0.31 0.33 
 Political associations 0.02  0.03  0.02 0.03 0.03 
Number of extracurricular activities 1.06  2.48  2.29 2.57 2.57 
No extracurricular activity 0.26  0.00  0.00 0.00 0.00 
At least 2 hours at normal school day playing …       
 … online-role PC-games 0.10  0.05  0.06 0.05 0.06 
 … skill or strategy PC-games 0.08  0.05  0.04 0.05 0.05 
 … other PC-games 0.21  0.12  0.13 0.10 0.13 
Number of observations 3,582   3,316   1,027 1,369 920 

Note: Table shows mean values of student characteristics by different intensity levels. All variables besides days/month musical 
practice and number of extracurricular activities are binary. 

Table 1 shows characteristics of extracurricular activities by intensity category for a better 

understanding of what playing music means and how musically inactive students spend their time. 

The first row shows that the high intensity group reports on average twice the number of days of 

musical practice compared to medium intensity. The second row displays the fraction of students 

in each group that reports taking lessons at a music school.10 The numbers confirm the notion stated 

before. Only 21% of the low intensity group report taking lessons at a music school, while 52% and 

68% in the medium and high intensity groups, respectively. This observation is in line with the 

argument above that low intensity must not mean serious practice, assuming taking formal music 

lessons at a music school is a good indicator for serious practice. These are the only available 

variables that can be used to characterize the nature of musical engagement. However, it is plausible 

to assume that the majority of the remaining active students participates in music clubs 

                                                                 
10 The question was asked in wave 2, half a year after wave 1. The measure contains 373 missing values due to attrition. Overall the 

pattern shows that musical engagement seems to be consistent over time as only 3% of non-musicians in wave 1 take lessons in 
wave 2. The questionnaire in wave 2 does not ask the music intensity question. 
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(“Musikverein”) in which about half a million children and adolescents participate in Germany 

(Bischoff, 2011). Most of them also offer music lessons but would not be counted as music schools. 

After a description of musical activity, the remainder of Table 1 shows other extracurricular 

activities that are assessed in the questionnaire: sports, voluntary relief organizations, religious 

youth groups, fan clubs, culture clubs, and political associations. Music seems not to crowd out any 

of the other extracurricular activities besides activities in fan clubs, which are substantially less 

popular among musicians. As a consequence, musicians engage in on average more extracurricular 

activities with 2.5 compared to 1 for non-musicians. This difference is mainly driven by 26% of the 

non-musicians who do not participate in any of these extracurricular activities. The question is how 

do non-musicians spend their time? One part of the answer is given in the last three rows of Table 

1. Non-musicians are twice as likely to report that they play at least two hours online-role PC-

games, skill or strategy PC-games, or other PC-games on normal school days.  

4 Econometric approach 

4.1 Identification 

Identification of the effects of music is complicated by the fact that the decision to play music and 

the intensity are not made at random. A lot of background characteristics like socio-economic status 

could influence the decision to play music and the outcomes of interest simultaneously. These so-

called confounders need to be controlled for in observational studies that are interested in causal 

effects. 

To fix ideas, consider the potential outcome framework of Rubin (1974) in a multivalued 

treatment setting with 𝑇𝑇 + 1 different treatments 𝐷𝐷𝑖𝑖 ∈ {0,1, … ,𝑇𝑇} (Imbens, 2000; Lechner, 2001). 

Random variables are indicated by capital letters and the realizations of these random variables by 

lowercase letters. Each individual 𝐼𝐼 = 1, … ,𝑚𝑚 has a potential outcome 𝑌𝑌𝑖𝑖𝑡𝑡 for each value of the 

treatment 𝐷𝐷𝑖𝑖 = 𝑚𝑚 but only the potential outcome of the realized treatment value is observed. The 

observed outcome is therefore 𝑌𝑌𝑖𝑖 = ∑ 𝟏𝟏{𝐷𝐷𝑖𝑖 = 𝑚𝑚}𝑌𝑌𝑖𝑖𝑡𝑡𝑡𝑡  and the potential outcomes with 𝐷𝐷𝑖𝑖 ≠ 𝑚𝑚 remain 
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latent. However, we aim at estimating the mean of the potential outcomes 𝜇𝜇𝑡𝑡 = 𝐸𝐸[𝑌𝑌𝑖𝑖𝑡𝑡] and their 

differences. For example, the average treatment effect (ATE), 𝜇𝜇1 − 𝜇𝜇0 = 𝐸𝐸[𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0], is often a 

parameter of interest in the case of a binary treatment variable 𝐷𝐷𝑖𝑖 ∈ {0,1}. The multivalued 

treatment setting considered here provides a larger set of average treatment effects by allowing any 

possible pairwise comparison 𝛾𝛾𝑚𝑚,𝑘𝑘 = 𝜇𝜇𝑚𝑚 − 𝜇𝜇𝑘𝑘 = 𝐸𝐸[𝑌𝑌𝑖𝑖𝑚𝑚 − 𝑌𝑌𝑖𝑖𝑘𝑘] for 𝑚𝑚 ≠ 𝑘𝑘.11 

The selection into different treatment levels in observational studies leads to 𝜇𝜇𝑡𝑡 ≠ 𝐸𝐸[𝑌𝑌𝑖𝑖] due 

to selection bias. However, identification of 𝜇𝜇𝑡𝑡 can still be achieved if a vector of covariates 𝑋𝑋𝑖𝑖 

exists such that the following two assumptions are fulfilled: 

Assumption 1 (Conditional independence): 𝑌𝑌𝑖𝑖𝑡𝑡∐𝐷𝐷𝑖𝑖|𝑋𝑋𝑖𝑖 = 𝑥𝑥,∀ 𝑚𝑚, 𝐼𝐼 and ∀𝑥𝑥 ∈ 𝜒𝜒. 

Assumption 2 (Common support): 𝑃𝑃[𝐷𝐷𝑖𝑖 = 𝑚𝑚|𝑋𝑋𝑖𝑖 = 𝑥𝑥] > 0,∀ 𝑚𝑚, 𝐼𝐼 and ∀𝑥𝑥 ∈ 𝜒𝜒. 

Both assumptions can be summarized as the so-called strong ignorability assumption 

(Rosenbaum & Rubin, 1983). The first assumption means that the treatment status is as good as 

randomly assigned conditional on covariates 𝑋𝑋𝑖𝑖. The second assumption requires that any unit needs 

to have a non-zero probability to receive each of the treatments. These assumptions allow the 

researcher to identify the average potential outcomes 𝜇𝜇𝑡𝑡 and consequently the causal effects 𝛾𝛾𝑚𝑚,𝑘𝑘. 

The plausibility of the common support assumption can be assessed and seems to be 

unproblematic in this application as discussed in Appendix E.12 The CIA is however untestable and 

careful arguments need to be made about the plausibility in each specific application.  

The setting in this paper deals with the four treatment levels defined in equation (1). In this 

case, the CIA requires that we observe all variables that influence the decision to be musically active 

and its intensity as well as the outcomes of interest simultaneously. The decision process that leads 

                                                                 
11 Note that the discussed effects are estimated for the population. In general, effects for different target populations are available 

like the average treatment effect on the treated and alike as discussed in detail, e.g., in Lechner (2001). 
12 D’Amour, Ding, Feller, Lei, & Sekhon (2017) discuss the trade-off between plausibility of the CIA and common support in high-

dimensional settings. However, below we assume and argue for sparsity of the outcome and the treatment model such that their 
concerns regarding the common support do not apply in our analysis, 
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to the observed intensity of music can be conceptualized as a three-stage process. The first two steps 

follow Cabane et al. (2016) and consider first the decision to engage in some extracurricular activity 

or not at all. In the second stage, students decide whether to play music or to engage in a different 

activity. If they decide to play music, the third step is to choose the intensity of musical practice.  

We control for the first stage of selection by considering only students that are at least active 

in one of the extracurricular activities shown in Table 1. Therefore, remaining students with 

intensity 𝑁𝑁𝑚𝑚𝑖𝑖 are at least engaged in one extracurricular activity and selection into being active is 

implicitly controlled for. This conditioning makes the CIA more plausible but also restricts the 

population for which the effects are identified to extracurricularly active students.13  

The remaining selection to be controlled for concerns the decision to engage in music and not 

in something else as well as the intensity decision conditional on making music. Following the 

extensive discussions in Hille and Schupp (2015) and Cabane et al. (2016), the biggest driving 

factor is most likely parents who decide together with the child which activities to start. Especially 

parental tastes and parenting attitudes could influence activity choice but also many other 

outcomes of children. The parental survey of the NEPS provides a battery of different measures 

that could be useful to control for these parental characteristics. The information about leisure 

activities (museum, cinema, opera, etc.) and information about home possessions can account for 

parental tastes. In particular, the information about home possessions contains important measures 

of the cultural interests of parents. It seems plausible to assume that the availability of artwork, 

classic literature, or books with poems in the household measure the revealed cultural preferences 

of parents. These variables are not available in previous studies but are crucial confounders, as 

shown below in Table 2. Further, information about pocket money, the availability of learning 

materials or parental aspirations for the child can be used as measures of parenting attitudes.14 

                                                                 
13 One sensitivity analysis shows that including also inactive students does not alter the main conclusions. 
14 The full list of variables in each category in italic is given in Table A.2 of the Appendix A. 
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Correlated with the previous “soft” factors are the economic conditions of a household. Music 

lessons are more prevalent in families with higher socio-economic status in part because they can 

afford such extracurricular activities. Therefore, it is important that we observe all the “hard” 

information on wealth, debt, education, etc. as well as parents work characteristics and other 

household demographics. The social circle of the parents might also impact students’ experience 

and maybe their decision for or against particular activities. Also in that dimension, the NEPS 

provides detailed information by asking about the occupations that are in the social circle of parents. 

Not only parental but also student characteristics could be of crucial importance. Especially 

early ability should be controlled for. However, the NEPS provides no direct measure of early 

ability. Thus, we follow previous studies and include recommendation for upper secondary school 

by teachers as proxy for early ability. Additionally, gender is included in the set of controls as girls 

are much more likely to play music as we see below. 

Finally, regional and school characteristics are taken into account. The 16 German states have 

high independence in setting up their schooling systems. Therefore, state dummies and dummies 

for the secondary school tracks students are enrolled in (basic, intermediate, or academic track) are 

considered as control variables. Additionally, we add dummies for each school in the sample to 

account for unobserved peculiarities at the school level.15 

Table A.2 in Appendix A documents how we extract 377 potential control variables from the 

NEPS. As argued above, these could all be factors that influence selection into playing music and 

hence potentially confound the analysis. However, some of these variables might themselves be 

outcomes of musical practice and could be endogenous controls. This would violate the following 

assumption required for identification for the causal effects:16  

                                                                 
15 The NEPS conducted a variety of school characteristics in an extensive survey. However, non-response to this survey would 

decrease the number of schools that we observe substantially. Thus, we stick to the inclusion of school dummies that should 
capture unobserved characteristics like musical profiles of the school, number of music teachers, etc if necessary. 

16 Lechner (2008) provides a detailed discussion about the issues of endogenous controls under CIA. 
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Assumption 3 (Exogeneity of controls): 𝑋𝑋𝑖𝑖𝑚𝑚 = 𝑋𝑋𝑖𝑖𝑘𝑘,∀ 𝑚𝑚,𝑘𝑘, 𝐼𝐼. 

The concern in this study is that musical practice measured in 9th grade implies usually a 

history of musical practice in earlier years. Several control variables also measured in 9th grade are 

prone to being influenced by this musical history. For example, measuring how often parents visit 

the opera or rock concerts could well be driven by the fact that they accompany their musically 

interested children. Further, parental aspirations about their children’s future could be more 

ambitious if musical practice has an effect on skills before 9th grade. Another potentially 

problematic block of variables is the social circle of parents. Social contacts with certain types of 

occupations could be formed by accompanying children to different happenings around their 

musical engagement.  

It is not clear whether these endogeneity concerns are relevant for the estimation or not. If the 

arguments above would be severe, including the endogenous variables could attenuate the effects 

because parts of the causal effect would be captured by the included controls that are themselves 

intermediate outcomes. The baseline specification therefore omits the variables that are suspect to 

being endogenous.17 One sensitivity check adds the potentially problematic variables to the analysis 

and finds that the results are not sensitive to their inclusion. 

Before explaining how we plan to control for selection into musical practice, it is interesting 

to investigate which of the above mentioned factors are the main drivers of selection. We should 

see differences in the distribution of control variables for different music intensities if selection into 

music is prevalent. One way to check such imbalances in a multivalued treatment setting is to 

calculate standardized differences comparing each treatment group with the remaining groups 

(Yang, Imbens, Cui, Faries, & Kadziola, 2016). Standardized differences scale the mean difference 

between one group and the rest by the square root of the mean variances of all groups and multiply 

this fraction by 100. It serves as a scale-free measure of imbalance in contrast to the t-statistic that 

                                                                 
17 The last column of Table A.2 in Appendix A indicates all the variables considered as potentially endogenous. 
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also depends on the sample size leading to even tiny differences getting statistically significant in 

large enough samples. We calculate standardized differences for all four intensity groups. Table 2 

shows means by intensity group for the ten control variables with the largest absolute normalized 

difference.18 

Table 2 reports gender as the largest driving factor into music. Only 38% of the non-musicians 

are female compared to 60% of those students doing any music. Interestingly the female share is 

not increasing with intensity. The shares in the low and medium intensity are 61% and 63% and 

thus significantly higher compared to 55% in the high intensity group. 

Table 2: Mean comparison of control variables with standardized differences above 15 

  Largest   No   Music 

 |SD|  music  Any  Low Medium High 
 (1)  (2)  (3)  (4) (5) (6) 

Female 32.3  0.38  0.60  0.61 0.63 0.55 
Classic literature in HH 31.1  0.39  0.60  0.54 0.60 0.67 
Books with poems in HH 25.2  0.59  0.76  0.72 0.77 0.79 
Academic track 25.0  0.39  0.56  0.49 0.58 0.61 
Recommendation for academic track 20.7  0.39  0.54  0.47 0.55 0.59 
More than 500 books in HH 19.8  0.12  0.22  0.18 0.23 0.25 
Mother university degree 18.6  0.08  0.16  0.12 0.18 0.18 
Father university degree 18.3  0.10  0.19  0.14 0.21 0.21 
Never went to museum last year 16.9  0.34  0.23  0.28 0.21 0.20 
26 to 100 books in HH 16.0   0.31   0.22   0.27 0.20 0.18 
Number of observations     2,627   3,316   1,027 1,369 920 

 Note: |SD| means absolute standardized difference. These are shown in column (1) as mean difference between one group and 
the rest divided by the square root of the sum of the variances in both groups times 100. Variables are ordered by the 
maximum absolute SD observed for the four intensity groups. HH means household. Columns (2) – (6) show means of 
binary variables by intensity groups. Column (2) considers only extracurricularly active students and omits completely 
inactive students. Only variables not considered as potentially endogenous are included. 

The other major drivers into music are parental cultural preferences, parental education and 

ability of children. Musically active children are more likely to live in households with classic 

literature, books with poems and a total number of books above 500. In contrast, non-musicians are 

more likely to live with parents that never went to a museum last year and have only fewer books 

at home. These cultural parental preferences are of course highly correlated with parental education, 

                                                                 
18 Appendix C.2 illustrates the imbalances of the high-dimensional covariate set that is used in the analysis below. 
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which also differs substantially. Parents of musically active students are twice as likely to hold a 

university degree compared to parents of non-musicians. Finally, students being in the academic 

track and having received such a recommendation in their early years are substantially more 

musically active. The observed patterns besides gender are all more pronounced for higher 

intensities of musical practice.  

Note that all variables indicating economic conditions show normalized differences below 

10. They all go in the direction suggested by parental education, namely children from economically 

more advantaged households are more likely to play music. However, the larger drivers seem to be 

parental preferences. This emphasizes the importance of measuring and including these preferences 

in the analysis. 

As suspected, we observe clear selection into playing music and also in the intensity of 

musical practice. However, the NEPS data provide a large set of variables that are needed to make 

identification via CIA plausible. The remaining threats to identification most likely stem from 

unobserved personality traits that are shown to be potentially related to musical practice (Corrigall, 

Schellenberg, & Misura, 2013) and the absence of better measures of early ability.19 

4.2 Estimation 

The previous section argued that the CIA is plausible given the rich set of control variables 

such that average potential outcomes and average causal effects can be identified. Common 

estimators in this multivalued treatment setting under the CIA apply either regression adjustment 

based on modelling the conditional expectations of the outcome, (generalized) propensity score 

matching or weighting based on modelling the conditional treatment probability, or a combination 

of both (see for recent overviews Linden, Uysal, Ryan, & Adams, 2016; Yang et al., 2016). Another 

                                                                 
19 An instrumental variable approach was considered in an early stage of the project as an alternative identification strategy. Making 

music was instrumented by the availability of music schools in the proximity of students. However, insufficient power of the 
instrument led to a huge variance of the estimates.  Drawing conclusions with comparable precision and credibility as the ones 
obtained from the presented approach based on CIA adopted here was hence not possible. 
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possibility is to exploit the ordered nature of the treatments and to match on the linear index of 

ordinal non-linear models (Joffe & Rosenbaum, 1999; Lu, Zanutto, Hornik, & Rosenbaum, 2001). 

All these options involve a decision about the set of confounders that are used to model either the 

outcome, the treatment, or both. Further, the functional form in which these variables enter the 

analysis has to be chosen.  

While the reasoning in the previous subsection is helpful in determining the potentially 

important groups of control variables, no such reasoning is available to choose the set of variables 

that should finally enter the analysis. Many of the previously discussed variables are highly 

correlated as most of them measure socio-economic status from different angles. Including all of 

them might lead to overfitting and substantial efficiency losses. However, even if we could identify 

the relevant controls or include all of them, no theory would tell us in which functional form they 

should enter the specification. The majority of the applied papers consider at this step that the main 

effects enter linearly. This assumes implicitly that interactions and non-linearities are irrelevant, 

which is rather restrictive given that there is usually no theoretical justification for such an 

assumption. If we are not willing to impose such restrictions on the functional form and allow, e.g., 

for second order interactions and up to 4th order polynomials for continuous variables, the number 

of variables that could be considered in this application already rises to about 60,000. In that case, 

we would end up with nearly ten times more variables than observations. It is impossible to include 

all of them in the analysis. 

The methods of the so-called double machine learning can deal with such high-dimensional 

settings under CIA as described in the literature review above. These methods require two things: 

(i) high-quality predictions for the outcome and the treatment probabilities, respectively, and (ii) 

scores for the parameters of interest that fulfill the Neyman orthogonality condition (Neyman, 
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1959). Farrell (2015) develops such a double machine learning estimator for multivalued treatments 

that meets these requirements. Therefore, it is a natural candidate for the research question at hand.20 

The estimator proposed in Farrell (2015) is based on Hahn’s (1998) and Cattaneo’s (2010) 

efficient score for the average potential outcome under CIA, 

𝜇𝜇𝑡𝑡 = 𝐸𝐸 �
𝑑𝑑𝑖𝑖𝑡𝑡�𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑡𝑡(𝑋𝑋𝑖𝑖)�

𝑝𝑝𝑡𝑡(𝑋𝑋𝑖𝑖)
+ 𝜇𝜇𝑡𝑡(𝑋𝑋𝑖𝑖)� ,∀ 𝑚𝑚                                         (2) 

where 𝑑𝑑𝑖𝑖𝑡𝑡 = 𝟏𝟏{𝐷𝐷𝑖𝑖 = 𝑚𝑚}, 𝜇𝜇𝑡𝑡(𝑥𝑥) = 𝐸𝐸[𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 𝑚𝑚,𝑋𝑋𝑖𝑖 = 𝑥𝑥] and 𝑝𝑝𝑡𝑡(𝑥𝑥) = 𝑃𝑃[𝐷𝐷𝑖𝑖 = 𝑚𝑚|𝑋𝑋𝑖𝑖 = 𝑥𝑥] denote 

the indicator, the conditional expectation of the outcome and the conditional probability for 

treatment t, respectively. Being a semi-parametrically efficient score, equation (2) fulfills the 

Neyman orthogonality condition automatically (Chernozhukov, Chetverikov, et al., 2017). This 

means that the derivation of the moment condition (2) with respect to the so-called nuisance 

parameters 𝜇𝜇𝑡𝑡(𝑥𝑥) and 𝑝𝑝𝑡𝑡(𝑥𝑥) is equal to zero at the true value 𝜇𝜇𝑡𝑡. As a consequence, the score in (2) 

is robust to small errors in these nuisance parameters. 

Appendix C elaborates on the important practical insight that equation (2) also has a weighted 

representation. It is shown that we can express (2) as 𝜇𝜇𝑡𝑡 = 𝐸𝐸�𝑌𝑌𝑡𝑡�𝐿𝐿𝑡𝑡
𝑝𝑝 + 𝐿𝐿𝑡𝑡

𝑌𝑌 − 𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌�� = 𝐸𝐸[𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡], 

where 𝐿𝐿𝑡𝑡
𝑝𝑝 are inverse probability weights, 𝐿𝐿𝑡𝑡

𝑌𝑌 are weights to estimate 𝜇𝜇𝑡𝑡(𝑥𝑥) and 𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌 is a 

combination of the first two components. The weights 𝐿𝐿𝑡𝑡 enable us to conduct standard assessments 

of covariate balancing. This is even more important in the high-dimensional setting of this paper 

because only few variables are selected in the estimation but all variables need to be balanced. The 

ability to validate that this works is thus a crucial component in the analysis. Further, we can inspect 

the weights for extremely large or negative values that could indicate common support issues or 

                                                                 
20 The interpretation as a multivalued model discards the information in the ordering of the treatment, which is more flexible but 

potentially not optimal in terms of efficiency. However, to the best knowledge of the author, no score fulfilling the Neyman 
orthogonality condition for estimators based on Joffe and Rosenbaum (1999) exploiting the ordering is currently available. If 
music intensity was measured continuously without obvious rounding errors, the choice would be to use the method of Kennedy, 
Ma, McHugh, and Small (2016).  
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extrapolation, respectively.21 Checking balance and inspecting underlying weights is good empirical 

practice but being able to do these checks comes at a cost. The choice of estimators for 𝜇𝜇𝑡𝑡(𝑥𝑥) is 

restricted to the candidates that have themselves a known weighted representation. 

Farrell (2015) shows that an estimator based on sample analogues of equation (2) is square-

root-n consistent and asymptotically normal if consistent estimators are used to approximate 𝜇𝜇𝑡𝑡(𝑥𝑥) 

and 𝑝𝑝𝑡𝑡(𝑥𝑥) and the product of their convergence rates reaches 𝑚𝑚−1/2. This is fulfilled if both 

estimators converge at 𝑚𝑚−1/4 but allows that one component converges more slowly.22  

The variance in the i.i.d. setting is given by the square of the efficient score:  

𝜎𝜎𝜇𝜇,𝑡𝑡
2 = 𝐸𝐸 ��

𝑑𝑑𝑖𝑖𝑡𝑡�𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑡𝑡(𝑋𝑋𝑖𝑖)�
𝑝𝑝𝑡𝑡(𝑋𝑋𝑖𝑖)

+ 𝜇𝜇𝑡𝑡(𝑋𝑋𝑖𝑖) − 𝜇𝜇𝑡𝑡�
2

� ,∀ 𝑚𝑚.                                  (3) 

Estimates of the mean potential outcomes are achieved in three steps: (i) get predictions for 

the conditional outcome �̂�𝜇𝑡𝑡(𝑥𝑥), (ii) get predictions for the conditional treatment probability �̂�𝑝𝑡𝑡(𝑥𝑥), 

(iii) plug in both predictions into the sample analogues of equations (2) and (3) to estimate �̂�𝜇𝑡𝑡 and 

𝜎𝜎�𝜇𝜇,𝑡𝑡
2 . 

Pairwise treatment effects are obtained by subtracting the efficient scores for the respective 

potential outcomes, 

𝛾𝛾𝑚𝑚,𝑘𝑘 = 𝐸𝐸 �
𝑑𝑑𝑖𝑖𝑚𝑚�𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑚𝑚(𝑋𝑋𝑖𝑖)�

𝑝𝑝𝑚𝑚(𝑋𝑋𝑖𝑖)
+ 𝜇𝜇𝑚𝑚(𝑋𝑋𝑖𝑖) −

𝑑𝑑𝑖𝑖𝑘𝑘�𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑘𝑘(𝑋𝑋𝑖𝑖)�
𝑝𝑝𝑘𝑘(𝑋𝑋𝑖𝑖)

− 𝜇𝜇𝑘𝑘(𝑋𝑋𝑖𝑖)� ,∀ 𝑚𝑚,𝑘𝑘.              (4) 

The corresponding variance is given by 

𝜎𝜎𝛾𝛾𝑚𝑚,𝑘𝑘
2 = 𝐸𝐸 ��

𝑑𝑑𝑖𝑖𝑚𝑚�𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑚𝑚(𝑋𝑋𝑖𝑖)�
𝑝𝑝𝑚𝑚(𝑋𝑋𝑖𝑖)

+ 𝜇𝜇𝑚𝑚(𝑋𝑋𝑖𝑖) − 𝜇𝜇𝑚𝑚 −
𝑑𝑑𝑖𝑖𝑘𝑘�𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑘𝑘(𝑋𝑋𝑖𝑖)�

𝑝𝑝𝑘𝑘(𝑋𝑋𝑖𝑖)
− 𝜇𝜇𝑘𝑘(𝑋𝑋𝑖𝑖) + 𝜇𝜇𝑘𝑘�

2

� ,∀𝑚𝑚,𝑘𝑘. (5) 

                                                                 
21 The weighted representation works for all the estimators based on the efficient score for average treatment effects like the efficient 

influence function estimator (Cattaneo, 2010), augmented inverse probability weighting (Glynn & Quinn, 2009), or the double 
machine learning approaches for binary treatments (Chernozhukov, Chetverikov, et al., 2017, 2018). 

22 For example, if the propensity score is known from the research design and converges faster than 𝑚𝑚−1/4 the requirements on the 
estimator for the conditional outcome can be relaxed accordingly. However, such an argument is not plausible in our setting. 
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4.3 Implementation  

We implement the Farrell (2015) estimator using Post-Lasso (Belloni & Chernozhukov, 

2013) with cross-validation to choose the penalty term for prediction of the nuisance parameters. 

This deviates from the expository application of Farrell (2015) that applies group Lasso and 

asymptotic penalty terms. In the following, we describe the modified implementation and explain 

the rationale behind the modifications. They help us to assess the sensitivity of the analysis to the 

machine learning part and allow us to conduct standard balancing checks of the covariates. 

The Post-Lasso is based on the Lasso estimator proposed by Tibshirani (1996).23 The Lasso 

solves the following optimization problem: 

argmin
𝛿𝛿�

���𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛿𝛿�
2

𝑛𝑛

𝑖𝑖=1

�  +  𝜆𝜆��𝛿𝛿𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

.                                           (6) 

The Lasso can be considered as an OLS estimator with a penalty 𝜆𝜆 on the sum of the absolute 

coefficients. We obtain the standard OLS coefficients if the penalty term is zero and we have at 

least as many observations as covariates. For a positive penalty term some coefficients are shrunken 

towards zero to satisfy the constraint. Thus, the Lasso serves as a variable selector because some 

variables have their coefficients set exactly to zero if the penalty is gradually increased. By 

increasing the penalty term to a sufficiently large number, one can obtain a path from a full model 

to an empty model with all coefficients besides the constant being zero. The idea of this procedure 

is to shrink those variables with little or no predictive power to zero and use either the remaining 

shrunken coefficients (Lasso), or the unshrunken coefficients from an OLS regression with the non-

zero estimates (Post-Lasso) for prediction.  

The covariate vector 𝑋𝑋𝑖𝑖 entering equation (6) in our application is obtained in the following 

way. Starting from all second order interactions of the 328 base variables and 4th order polynomials 

for continuous variables, we drop those interactions that create empty cells or nearly empty cells 

                                                                 
23 See for extensive treatments of the Lasso, e.g., Bühlmann and van de Geer (2011) and Hastie et al. (2015). 
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containing less than 1% of the observations. Further, we keep only one variable of variable groups 

that show absolute correlations above 0.99. Finally, we add dummies for states, school track, and 

each school in the sample. This gives a total of 10,066 variables to be considered in the selection 

process. Dummies for state and school track are left unpenalized because institutional knowledge 

tells us that we expect substantial differences across states and school tracks, which should be 

accounted for. The “empty” model therefore contains already 19 variables and the Post-Lasso is 

used to find the predictors that should enter on top.24 

The outcome predictions are obtained by separate OLS Post-Lasso selection and prediction 

in each treatment category. The predicted propensity score is obtained by separate logistic Post-

Lasso selection to account for the binary nature of the treatment indicators (Belloni, Chernozhukov, 

& Wei, 2013). Appendix E shows the obtained propensity scores and explains how we enforce 

common support. 

Predictions based on OLS Post-Lasso have the advantage that they can be represented as 

weighted averages of outcomes.25 Appendix C shows how this property is utilized to assess 

covariate balancing underlying the applied estimator. Such balancing checks are standard in 

applications based on matching or weighting by the propensity score (see, e.g., Lee, 2013). These 

checks indicate whether the applied estimator successfully balances the covariate distribution and 

thus removes confounding from the imbalances reported in Table 2. Especially in the high-

dimensional setting, the ability to assess balancing of all variables is highly relevant. To the best 

knowledge of the author, there is currently no weighted representation of the standard Lasso 

available. Thus, balancing checks for an estimator using standard Lasso prediction would not be 

possible.26 

                                                                 
24 A sensitivity analysis without forcing these dummies into the model shows very similar results to this procedure. 
25 Alternatively, e.g. post-Boosting (Luo & Spindler, 2016) or Random Forests (Breiman, 2001) could be used.  
26 The estimation of the propensity score must not produce any extractable weights as only the prediction itself is used to calculate 

the propensity score part of the weights. 
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The penalty term for the baseline results is chosen via cross-validation. Cross-validation aims 

to find the penalty term that minimizes out-of-sample mean squared error (MSE). Details of the 

procedure are explained in Appendix B.1. The penalty choice via cross-validation also provides a 

natural way to assess sensitivity of the results to the penalty chosen. Appendix B.2 explains how 

we adapt the idea of  the one standard error rule (1SE) introduced by Breiman, Friedman, Stone and 

Olshen (1984) for sensitivity assessment regarding penalties. In short, the 1SE rule starts from the 

MSE minimizing penalty and goes a data-driven step towards a larger penalty, and therefore smaller 

model. Similarly, we can go towards smaller penalties and more complex models using a 1SE+ 

rule. The investigation of results obtained using such different penalties indicates whether or not 

the method produces stable results for a range of plausible penalty terms. In the ideal case, the 

estimates should be stable if model complexity is increased beyond the cross-validated minimum 

but the standard errors should get larger. This would indicate that the confounding is sufficiently 

controlled for at the cross-validated minimum and all additional variables just decrease efficiency.27  

As stated in the previous subsection, the estimator we consider requires that predictions of 

the nuisance parameters converge at the rate 𝑚𝑚−1/4. At this stage, we need to assume that the cross-

validated Post-Lasso achieves this rate because the convergence rate of this particular estimator is 

not yet available. The assumption that this convergence rate is feasible builds on two theoretical 

results. First, Chetverikov, Liao and Chernozhukov (2017) show that cross-validated Lasso can 

reach  𝑚𝑚−1/4 convergence assuming sparsity of the underlying model. The sparsity assumption 

means that the number of relevant variables 𝑑𝑑 is much smaller than the number observations 𝑚𝑚.28 

We are not aware of any theoretical or heuristic tests for the plausibility of sparsity assumptions. 

However, the sensitivity analysis regarding the penalty choice provides evidence that the sparsity 

                                                                 
27 A second advantage of using cross-validated instead of asymptotic penalties is the increased robustness to deviations from the 

theoretical setup used to derive the asymptotic penalties. Farrell (2015) notes in his simulation study that cross-validation provides 
excellent performance over a variety of sparse data generating processes, while the asymptotic choice is more sensitive. 

28 Formally, Chetverikov et al. (2017) show that cross-validated Lasso with Gaussian errors converges at the rate 
(𝑑𝑑 log 𝑝𝑝/𝑚𝑚)1/2 log7/8(𝑝𝑝𝑚𝑚), where 𝑝𝑝 is the number of potential variables. This implies that 𝑚𝑚−1/4 convergence requires 
𝑑𝑑2 log2𝑝𝑝 log7/2(𝑝𝑝𝑚𝑚)/𝑚𝑚 → 0. The sparsity requirements with cross-validated penalty are thus more strict compared to Lasso with 
data-driven penalty based on asymptotic arguments where 𝑑𝑑2 log2𝑝𝑝 /𝑚𝑚 → 0 is needed for 𝑚𝑚−1/4 convergence (Belloni et al., 
2014b). 
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assumption is not an issue in this application. Sparsity might be seen as conceptualization of the 

empirical practice to include only few controls compared to sample size. Such practices implicitly 

assume that the chosen variables are sufficient to provide a good approximation of the models of 

interest. Second, Belloni and Chernozhukov (2013) show that Post-Lasso converges at least as fast 

as Lasso under data-driven penalty terms based on asymptotic arguments. It seems therefore 

plausible to assume that a similar relation holds also for cross-validated Post-Lasso and cross-

validated Lasso such that the required convergence of 𝑚𝑚−1/4 is feasible in our implementation.  

Finally, we need to cluster the standard errors at school level s because the sampling is school 

based as described in section 3.1. The clustered standard errors are estimated as 𝜎𝜎�𝜇𝜇,𝑡𝑡 √𝑚𝑚⁄  where 

𝜎𝜎�𝜇𝜇,𝑡𝑡
2 =

1
𝑁𝑁
���

𝑑𝑑𝑖𝑖𝑡𝑡�𝑌𝑌𝑖𝑖 − �̂�𝜇𝑡𝑡(𝑋𝑋𝑖𝑖)�
�̂�𝑝𝑡𝑡(𝑋𝑋𝑖𝑖)

+ �̂�𝜇𝑡𝑡(𝑋𝑋𝑖𝑖) − �̂�𝜇𝑡𝑡
𝑖𝑖∈𝑠𝑠

�
2

.
𝑠𝑠

                                  (7) 

The hat notation in equation (6) indicates estimated sample equivalents of the arguments in 

equation (3). Corresponding to, e.g., clustered standard errors for OLS, equation (7) sums first over 

all students i in the same school s to account for potential within-school correlations before 

summing over the schools.29 

5 Results 

5.1 Effects of music on youth development 

Table 3 shows the results for the comparison of musically active and inactive students in 

column one as well as comparisons between the different intensity categories in the remaining 

columns. Pairwise comparisons of intensities always compare the higher with the lower intensity 

in the respective pair. All outcome variables are standardized to have zero mean and variance one. 

For cognitive skills, the first column reports highly significant increases of about 0.1 standard 

deviation (sd) for objectively measured science, math, vocabulary, and ICT skills for students 

                                                                 
29 Clustered standard errors are at most 10% larger than the i.i.d. standard errors indicating that clustering is not a major issue in this 

application. 
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practicing music at least one day per month. Only reading skills show no significant improvement. 

This result is qualitatively in line with Cabane et al. (2016) and Hille and Schupp (2015). The latter 

show similar effect sizes for cognitive skill. With their standard errors being four times larger than 

those obtained in this study, they cannot report significance, though. This might be mainly attributed 

to our substantially larger sample size.  

Table 3: Main results for binary and dose-response treatment effects 

  Binary   Dose-response 

 Any - No   Low - No Med - No High - No Med - Low High - Low High - Med 
  (1)    (2) (3) (4) (5) (6) (7) 

Cognitive skills (standardized)         
Science 0.11***  0.04 0.14*** 0.17*** 0.10*** 0.13*** 0.03 

 (0.02)  (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 
Math 0.08***  0.05 0.12*** 0.10*** 0.07** 0.05 -0.02 

 (0.02)  (0.03) (0.02) (0.04) (0.04) (0.04) (0.04) 
Vocabulary 0.11***  0.02 0.16*** 0.18*** 0.14*** 0.16*** 0.02 

 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Reading -0.03  0.01 -0.04 -0.01 -0.06 -0.02 0.03 

 (0.02)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
ICT 0.12***  0.06* 0.15*** 0.18*** 0.09** 0.11** 0.03 

 (0.02)  (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 
School performance (standardized)         
German grade 0.12***  0.11*** 0.13*** 0.16*** 0.03 0.05 0.03 

 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Math grade 0.05*  0.04 0.08** 0.04 0.04 -0.003 -0.04 

 (0.03)  (0.04) (0.04) (0.05) (0.04) (0.05) (0.05) 
Average grade German & math 0.09***  0.09** 0.13*** 0.10** 0.03 0.01 -0.03 

 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Big Five (standardized)         
Extraversion 0.03  0.001 0.04 0.07 0.04 0.07 0.02 

 (0.03)  (0.04) (0.04) (0.05) (0.04) (0.05) (0.05) 
Agreeableness 0.11***  0.11*** 0.10*** 0.11*** -0.005 0.006 0.01 

 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Conscientiousness -0.04  -0.04 -0.06* -0.007 -0.02 0.04 0.05 

 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Neuroticism 0.001  0.05 -0.02 -0.04 -0.08* -0.10* -0.02 

 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Openness 0.31***  0.13*** 0.33*** 0.50*** 0.20*** 0.37*** 0.18*** 

 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Note: This table shows the estimated effects comparing different intensities of musical practice. All outcome variables are 

standardized to mean zero and variance one. Higher grades are better. The results are obtained by applying the Farrell 
(2015) estimator using Post-Lasso with penalty chosen at the minimum of 10-fold cross-validated MSE. State and school 
track dummies enter the selection unpenalized. Standard errors in parentheses are clustered at the school level.  *, **, 
*** indicate statistical significance at the 10%, 5%, 1% level, respectively. 
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The comparison of different intensities shows a clear pattern. The improvements are mainly 

driven by students with medium and high intensities. For example, science skills improve by a 

highly significant 0.14 sd for medium intensity versus inactive students and 0.17 sd for high 

intensity versus inactive students. In contrast, the increase of 0.04 sd for low intensity versus 

inactive is not significant. Similar patterns are also observed for math, vocabulary, and ICT skills. 

Columns four and five document that the differences of the medium or high versus low intensity 

are also significant at least at the 5% level. The only exception is high versus low intensity for math 

skills. Column seven shows no further significant improvements for high intensity versus medium 

intensity practice.  

The results on cognitive skills suggest that the cognitive benefits materialize only for serious 

practice and not for only occasional music making. This is in contrast to the finding for school 

performance in the panel below. In line with previous studies, column one shows significant 

improvements for German and math grades for musically active students, while the improvements 

of German are more pronounced with a highly significant 0.12 sd compared to a marginally 

significant 0.05 for math. Unlike in the case of cognitive skills, column two shows that even a low 

intensity of music results in significantly improved German grades. The comparisons between low, 

medium and high intensities in columns five to seven show no additional significant difference. 

One potential explanation of this pattern is that the mere signal of playing music is already rewarded 

by teachers (see for similar results and discussion Hille & Schupp, 2015). A potential explanation 

for different sizes of the effects is that low intensity students participate in school-based musical 

activities like voluntary school choirs and German teachers are more receptive to this signal than 

math teachers. This is plausible for two reasons. First, the subject of German is closer related to arts 

than math and German teachers potentially care more about artistic activities of their students than 

their math colleagues. Second, even if German and math teachers care to the same degree, German 

grades are more subjective compared to the relatively objectively measurable performance in math. 
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The results regarding the Big Five suggest that playing music has a significant effect on two 

personality traits. The measure of agreeableness increases by 0.11 for musically active students. 

This effect does not differ for different intensity categories. However, the large increase in openness 

by 0.31 sd for music versus no music can be split into differential increases with intensity. Openness 

is the only variable that shows a significant and large difference between high and medium intensity 

with 0.18 sd in column seven. The finding that openness is by far most affected by musical practice 

is in line with the results in Cabane et al. (2016) and Hille and Schupp (2015). Similar to their data, 

openness in the NEPS data is partly assessed by asking about artistic interests (Rammstedt & John, 

2007; Wohlkinger, Ditton, von Maurice, Haugwitz, & Blossfeld, 2011). This could explain the 

observed effect sizes at least partly. 

5.2 Sensitivity analyses 

The results of double machine learning methods might be sensitive to the tuning parameter choice 

in the machine learning part. However, the literature lacks guidance on how to assess the sensitivity 

to penalty choices. Section 4.3 and Appendix B.2 propose alternative rules for a systematic 

investigation of the sensitivity of the results to smaller or larger models. Appendix D.1 discusses in 

detail how important parameters of the analysis like number of selected variables, implied weights 

and covariate balancing vary for different penalty term choices and how these differences affect the 

results. The main conclusion is that increasing the model complexity beyond the baseline MSE 

minimizing penalty leads to only marginal changes of the results. This is surprising as the alternative 

penalty choice rules that we consider selects up to six times more additional control variables than 

the baseline penalty. However, we observe that the rather sparse specifications of the baseline with 

not more than ten additional variables seem already sufficient to control for the selection into 

playing music. The estimated effects obtained from more complex models vary only within one 

standard error of the baseline results and the qualitative conclusions are the same. One exception is 

the effect on math grades for the binary treatment case. This effect is significant at 10% in the 
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baseline but not anymore when including more control variables. We find in general that adding 

more variables than in the baseline model increases covariate balancing of all potential confounders 

only marginally but decreases efficiency mildly due to more extreme implied weights. 

It would be tempting to run an additional sensitivity analysis that compares the baseline 

results with results obtained from only inverse probability weighting (IPW) and only regression 

adjustment (RA). However, these single equation approaches do not yield uniformly valid statistical 

inference as discussed in the literature review above. Thus, we would not know how to calculate 

standard errors for these separate approaches. Instead, we use the “anatomy” of double machine 

learning (DML) that is derived in Appendix C, 𝜇𝜇𝑡𝑡 = 𝐸𝐸�𝑌𝑌𝑡𝑡�𝐿𝐿𝑡𝑡
𝑝𝑝 + 𝐿𝐿𝑡𝑡

𝑌𝑌 − 𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌�� = 𝐸𝐸[𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡], to 

investigate how the IPW weights (𝐿𝐿𝑡𝑡
𝑝𝑝) and RA weights (𝐿𝐿𝑡𝑡

𝑌𝑌) relate to the DML weights (𝐿𝐿𝑡𝑡). The 

results in Appendix D.2 show that DML weights are highly correlated with the IPW weights. 

Further, we observe that the rather poor balancing performance of the RA weights is offset by the 

adjustment weight (𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌). The DML weights lead to slightly better balancing compared to the 

balancing obtained from IPW weights only. Thus, in addition to valid statistical inference, the DML 

approach also improves balancing of the covariate distribution compared to the single equation 

approaches. 

Appendix D.3 discusses in detail further sensitivity analyses. Including the potentially 

endogenous control variables to the set of available controls produces very similar results compared 

to the baseline. Also restricting the comparison to music versus sports instead of music versus any 

kind of extracurricular activities does not alter the qualitative findings. However, using the full 

sample and comparing music versus all non-musicians produces several more significant positive 

effects that might be explained by the failure to control for selection into any extracurricular 

activity. This emphasizes the importance of the approach advocated in Cabane et al. (2016). 

Sensitivity checks regarding the enforcement of common support and the fixed inclusion of 

state and school track dummies show that these choices do not matter for the results either. 
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Surprisingly, considering only the main effects instead of the large set of interactions and 

polynomials also produces results that are very similar to the baseline with over 10,000 available 

potential variables. 

6 Conclusion 

This study investigates the effect of playing music on the cognitive and non-cognitive skills of 9th 

grade students in Germany. The results are in line with previous studies showing significantly 

positive effects of musical practice per se. Going beyond the mere comparison of musicians and 

non-musicians, the study assesses the effects of different intensity levels of practice. It is shown 

that standardized and objectively measured cognitive skills require at least a medium level of 

practice to show notable benefits. However, substantial improvements in teacher assessed German 

grades are already observed for low intensity practice. This is in line with similar observations in 

Hille and Schupp (2015) who argue that playing music might affect school grades also through a 

positive signal to teachers. Regarding non-cognitive skills, we document significant improvements 

in openness that are increasing with intensity level. However, the openness indicator creates a 

mechanical relation to music by including artistic interests. Therefore, it remains an open question 

whether similar effects would be found for different indicators of openness. Overall, we find no 

evidence that a high intensity of making music could be harmful by crowding-out other important 

activities. 

The estimation of the effects is implemented using recent double machine learning estimators 

that allow a flexible and transparent way to obtain causal estimates. One concern regarding these 

methods is that they might depend heavily on the specific parameter choice. This paper proposes a 

systematic way to address these concerns and finds very stable results for a range of plausible 

penalty terms. Surprisingly, very small models including only about 10 variables suffice to obtain 

stable effects and moving to substantially richer model specifications leads only to mildly decreased 

efficiency. Another interesting point is that considering only the main effects as potential control 
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variables instead of the more flexible set with interactions and polynomials gives nearly identical 

results. This indicates that increasing the flexibility and the computational burden is not necessary 

in this application. However, this could be different for other applications. The derived weighted 

representation of the double machine learning estimator is useful to incorporate standard empirical 

practice in applications of these estimators. It is also of general use in applications of estimators 

based on the efficient score and double machine learning using different methods to estimate the 

nuisance parameters. 

On the methodological side, further research is required to investigate how different choices 

made throughout the paper are sensible. The goal should be to find good practices for double 

machine learning in empirical applications. These are needed for all details of the implementation, 

especially regarding different choices of predictors and penalty terms, the dimension of the 

covariate matrix (order of interactions and polynomials), and common support enforcement. 

Further, the relevance of the idea of cross-fitting proposed by Chernozhukov et al. (2018, 2017) 

should be investigated.30 Regarding identification, the available data about parental tastes seem to 

be crucial. However, future investigations should add better measures of early ability to check 

whether those factors are driving the mostly positive results of extracurricular activities in the 

literature. 

 

  

                                                                 
30 The data for this project are only available via remote access and the computationally expensive cross-fitting is therefore not 

pursued in this project. 
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Appendices 

The following Appendices are not meant for publication but to provide 

supplementary information in an online repository. 

Appendix A: Data 

This Appendix gives more details about the sample selection and data preparation steps. 

Table A.1: Sample selection 

Step 
Remaining # of 
observations 

All students in the NEPS database 15,577 
Merging with parents (missing parental interview) 8,786 
Missing information about musical practice (mostly driven by special needs schools where the 
question was not asked) 7,784 
Missing grades 7,527 
Missing Big Five 6,927 
Missing cognitive skills 6,898 
No extracurricular activities 5,943 

 
 

Table A.2 on the next page describes the generation of all potential control variables we consider 

from the NEPS data. Mainly categorical variables are coded as binary indicators for each category. 

Further, continuous variables such as wealth are additionally coded as categorical variables with 

binary indicators for each category. 
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Table A.2: Coding of all considered control variables 

  
Coding of variables 

# of 
generated  
variables 

Potentially 
endogenous 

Student characteristics    
 Female binary 1  
 Recommendation secondary school 4 categories 4  
 Held back a year / repeated grade binary 1 x 
 Skipped grade binary 1 x 
     
Leisure preferences parents    

 
Parent's quantity reading on leisure days 
(hrs/day) continuous 1 

 

 Number of books in HH 
6 categories (0-10 books to more 

than 500 books) 6 
 

 
Participation in high culture: museum, art 
exhibition 

5 categories (never last year - more 
than 5 times) 

5 
 

 Participation in high culture: cinema 5  
 Participation in high culture: opera 5 x 
 Participation in high culture: theatre 5  
 Participation in high culture: rock concert 5 x 
     
Work characteristics parents    
 Parent's quantity reading on work days (hrs/day) continuous 1  
 Mother employment status 4 categories (unemployed, side-job, 

part-/ full-time) 
4  

 Father employment status 4  
 Mother occupation 12 categories 12  
 Father occupation 12  
     
Economic condition household    
 Assessment economic HH situation 5 categories (very poor - very god) 5  
 Assets in the HH: savings book/checking account 

8 binary variables respectively + 
mutually exclusive groups describing 
all observed combinations of asset 

types 
166 

  

 Assets in the HH: building loan contract   

 Assets in the HH: life insurance policy   

 Assets in the HH: fixed-interest securities   

 Assets in the HH: stocks, funds, bonds   

 Assets in the HH: business assets   

 
Assets in the HH: owner-occupied real estate 
property  

 

 Assets in the HH: other real estate property   

 Household assets not including debt in € 
1 continuous variable + 6 categorical 

(0 - > 500,000 €) 7 
 

 

 HH debt in € 
1 continuous variable + 5 categorical 

(0 - > 200,000 €) 6 
 

 

 HH net wealth in € 
continuous difference of two 

variables above 1 
 

 

 HH receives transfer payments binary 1   

      
Parenting attitudes     

 Interference in partner selection  4  

 
Men & women same right to decide on family 
income 

4 categorical (completely disagree - 
strongly agree) 4 

 
 

 
Vocational training more important for boys than 
for girls 

 4 
 

 

 Wish about final degree of child 4 categories (don't care - university) 4 x  

 Pocket money in € per month continuous 1   

Table continues on next page >     
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Table A.2 continued 

  
Coding of variables 

# of 
generated  
variables 

Potentially 
endogenous 

 Parents idealistic aspiration apprenticeship 4 categories 4 x  
 Parents idealistic aspiration school graduation 4 categories 4 x  
 Parents importance of good grades 6 categories 6 x  

 Parents importance of professional success 6 categories 6 x  
      
In your house is there …     

 … a desk to study binary 1   

 … a room just for student binary 1   

 … learning software binary 1   

 … classic literature binary 1   

 … books with poems binary 1   

 … works of art binary 1   

 … books useful for homework binary 1   

 … a dictionary binary 1   

      
Household demographics     

 Age father 1 continuous + 7 age categories of 5 
years + 1 category if missing 

9   
 Age mother 9   
 Highest education mother 10 categories 10   

 Highest education father 10 categories 10   

 Marital status 6 categories 6   

 Migration background binary 1   

 Household size continuous 1   

 People under the age of 14 in HH continuous 1   

 Household composition:     

 biological mother, adoptive mother, foster mother binary 1   

 stepmother or father’s girlfriend binary 1   

 Biological father, adoptive father, foster father binary 1   

 Stepfather or mother’s boyfriend binary 1   

 Siblings and/or stepsiblings binary 1   

 Grandmother and/or grandfather binary 1   

      
Social circle of parents includes …     

 … nurse or male nurse binary 1 x  

 … engineer binary 1 x  

 … warehouse / transport worker binary 1 x  

 … social worker binary 1 x  

 … sales clerk binary 1 x  

 … police officer binary 1 x  

 … doctor binary 1 x  

 … banker binary 1 x  

 … car mechanic binary 1 x  

 … legal practitioner binary 1 x  

 … optician binary 1 x  

 … translator binary 1 x  

 … teacher binary 1 x  

      
Regional information     

 Population density  7 categories 7   

 Music school in district binary 1   

Number of variables  377 49  

Note: HH means household, hrs means hours. 
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Appendix B: Penalty choice and sensitivity 

B.1: Cross-validation 

The penalty term for the predictions used in the analysis is chosen via 10-fold cross-validation 

(for a more technical description see, e.g., Chetverikov et al., 2017). To this end, we split the sample 

randomly in ten parts of the same size. The Post-Lasso model is estimated over a grid of penalty 

terms in nine of these parts.31 The variables with non-zero coefficients at each grid point are used 

in a standard OLS or logit to predict in the left out subsample. The mean squared error (MSE) of 

these predictions are calculated at each grid point. This is repeated ten times such that each 

subsample is used once as the left out sample. The mean is calculated over the ten series of MSE’s 

at each grid point of penalties. Finally, the penalty showing the lowest mean MSE is used to estimate 

the model in the full sample and to get the predictions that are plugged into the score. 

B.2.: Sensitivity analysis regarding penalty choice 

Farrell (2015) concludes by emphasizing the importance of the penalty parameter and the lack 

of knowledge about the proper choice. This is particularly true for the application of his and other 

recently proposed estimators using machine learning tools for causal inference. It is of integral 

importance for the credibility of results obtained from such estimators to assess the sensitivity of 

the results to the penalty choice. 

We propose one way to address this issue in a systematic way. It is based on the one-standard-

error rule (1SE) introduced by Breiman et al. (1984) in the context of cross-validation of 

classification and regression trees. The 1SE rule is motivated by the observation that the cross-

validated MSE is rather flat around the penalty indicating the minimum. Consequently there is some 

degree of uncertainty about the MSE minimizing penalty. Breiman et al. (1984) propose to estimate 

                                                                 
31 The grid is chosen such that at most about 500 variables enter the model to increase computational speed. At this point the model 

is always already too complex. It shows very bad out-of-sample performance indicating severe overfitting. 



41 
 

the standard error of the cross-validated MSEs and take the penalty that is one standard error in the 

direction of a smaller model. Although the choice of one standard error is ad-hoc, the 1SE rule is 

widely applied and taught in machine learning textbooks (Hastie et al., 2009; Hastie, Tibshirani, & 

Wainwright, 2015). The underlying idea is that we want to opt for the less complex model under 

uncertainty about the optimal penalty term. 

We propose to complement the 1SE rule by the 1SE+ rule that considers the more complex 

model within one standard error. This provides a natural way to investigate sensitivity of the 

parameters to the penalty choice. The level of penalties depend heavily on the data in an application 

and are not comparable for least squares and logistic regression. Estimators based on the efficient 

score usually require plug-ins from different machine learners. Therefore, running sensitivity 

checks by changing the penalty terms for all nuisance parameters by a fixed absolute or relative 

amount is problematic. A 10% decrease in the penalty term could, e.g. lead to a large number of 

added variables in the outcome equation but only a few on the treatment equation. Sensitivity checks 

based on the standard error of the cross-validated MSE have thus the big advantage that they adapt 

to the different components of the efficient score. Additionally, it works not only for Lasso-based 

methods but also for any other machine learning algorithm that involves the choice of a tuning 

parameter via cross-validation. Specifically, we investigate in this application the 1SE, 1SE+, and 

2SE+ rules and compare their results to the cross-validated minimum.32 Figure B.2 provides a 

representative example that shows how the different rules show similar magnitudes of mean-

squared error but substantially different numbers of included variables. 

Checking the sensitivity with regard to penalty term choice is also informative about some 

other issues in the analysis. (i) The clustering is ignored in the choice of the penalty term. This 

should lead to more complex models than optimal if clustering is substantial. If the effects are stable 

going from the minimum penalty to a smaller model, this would indicate that clustering is 

                                                                 
32 A 2SE rule leads in most cases to empty models in is not considered. 
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problematic. (ii) The Post-Lasso estimator assumes sparsity. If going from the minimum penalty to 

more complex models changes the estimated effects substantially, this could be an indicator for a 

failure of sparsity in a specific application. (iii) The cross-validation optimizes the MSE of the 

treatment and outcome but not of the (unobserved) causal effect. Therefore, the applied procedure 

aims to minimize the MSE for the wrong estimand (see Frölich (2005) for a similar argument 

regarding non-parametric estimators as plug-ins for causal effects). Instability of the estimated 

effects for deviations from the minimum penalty could indicate that this concern is relevant. 

Although rules based on cross-validation standard errors are arbitrary and not based on 

theoretical considerations, they provide a systematic tool to assess sensitivity of causal estimates 

based on machine learning algorithms in practice.  

Figure B.1: Representative example of cross-validation 

 

Notes: Cross-validation of propensity score for the binary treatment. It shows the mean-squared error along the penalty grid (black 
line), the number of variables included (red line) as well as the position of the 2SE+, 1SE+, minimum and 1SE penalty 
term choices (blue lines from left to right). Recall that the empty model contains already 19 variables. 
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Appendix C: Assessment of covariate balancing in estimators based 

on the efficient score 

C.1 Derivation of weights 

Good practice in (multivalued) treatment effects applications based on propensity scores 

requires to assess the balancing of the covariates before and after adjusting for selection. These 

balancing checks exploit that the mean potential outcome of treatment group t can be expressed as 

a weighted average of the observed treated or formally as �̂�𝜇𝑡𝑡 = 𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡
𝑝𝑝, where 𝑌𝑌𝑡𝑡 is a 1 x 𝑁𝑁𝑡𝑡 vector 

containing the 𝑁𝑁𝑡𝑡 observed outcomes in this treatment group and 𝐿𝐿𝑡𝑡
𝑝𝑝 is an 𝑁𝑁𝑡𝑡 x 1 vector containing 

weights obtained from matching or weighting by the propensity score  (see, e.g., Huber, Lechner, 

& Wunsch, 2013; Smith & Todd, 2005). For example, 𝐿𝐿𝑡𝑡
𝑝𝑝′ = [𝐿𝐿𝑡𝑡,1

𝑝𝑝 , … ,𝐿𝐿𝑡𝑡,𝑁𝑁𝑡𝑡
𝑝𝑝 ] with 𝐿𝐿𝑡𝑡,𝑖𝑖

𝑝𝑝 = 𝑑𝑑𝑖𝑖𝑡𝑡 𝑝𝑝(𝑥𝑥)⁄  

for inverse probability weighting. Balancing of the covariates between different treatment groups 

is than assessed by calculating, e.g. the normalized differences based on the weighted covariates 

𝑋𝑋𝑡𝑡𝐿𝐿𝑡𝑡
𝑝𝑝 in each group, where 𝑋𝑋𝑡𝑡 is a 𝑝𝑝 x 𝑁𝑁𝑡𝑡 matrix containing the 𝑝𝑝 covariates of the observations in 

treatment group 𝑚𝑚. 

So far, balancing tests are not conducted for estimators based on efficient scores. Though not 

naturally appearing in the estimation procedure, the underlying weights can be calculated as soon 

as a weighted representation of the predicted outcomes is available as 𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡
𝑌𝑌. Equation (2) can then 

be rewritten as 

𝜇𝜇𝑡𝑡 = 𝐸𝐸�𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡
𝑝𝑝 + 𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡

𝑌𝑌 − 𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌� = 𝐸𝐸�𝑌𝑌𝑡𝑡�𝐿𝐿𝑡𝑡

𝑝𝑝 + 𝐿𝐿𝑡𝑡
𝑌𝑌 − 𝐿𝐿𝑡𝑡

𝑝𝑝𝑌𝑌�� = 𝐸𝐸[𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡]. 

The vector of weights 𝐿𝐿𝑡𝑡 can be used for balancing checks inspecting 𝑋𝑋𝑡𝑡𝐿𝐿𝑡𝑡 or checking for 

extreme weights due to small propensity scores or extrapolation. As we are using Post-Lasso, the 

weights for predicting the outcome of unit i are provided by the 𝑁𝑁𝑡𝑡 x 1 vector 𝐿𝐿𝑡𝑡,𝑖𝑖
𝑌𝑌 = 𝑋𝑋𝑡𝑡(𝑋𝑋𝑡𝑡′𝑋𝑋𝑡𝑡)−1𝑋𝑋𝑖𝑖 

and sum to one (Abadie, Diamond, & Hainmueller, 2015). To calculate the weight vector 𝐿𝐿𝑡𝑡, we 

need 𝐿𝐿𝑡𝑡
𝑌𝑌 = �𝐿𝐿𝑡𝑡,1

𝑌𝑌 , … ,𝐿𝐿𝑡𝑡,𝑁𝑁
𝑌𝑌 �𝐣𝐣, where 𝐣𝐣 is a 𝑁𝑁 x 1 of ones to sum the rows of the matrix, as well as 
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𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌 = �𝐿𝐿𝑡𝑡,1

𝑝𝑝 𝐿𝐿𝑡𝑡,1
𝑌𝑌 , … ,𝐿𝐿𝑡𝑡,𝑁𝑁

𝑝𝑝 𝐿𝐿𝑡𝑡,𝑁𝑁
𝑌𝑌 �𝐣𝐣. The vector 𝐿𝐿𝑡𝑡 = 𝐿𝐿𝑡𝑡

𝑝𝑝 + 𝐿𝐿𝑡𝑡
𝑌𝑌 − 𝐿𝐿𝑡𝑡

𝑝𝑝𝑌𝑌 then gives the weight that each 

outcome in the treatment group receives in the estimation of the mean potential outcome. The point 

estimates obtained from the plug-in estimator and the weighted representation are identical.33 

However, the latter is computationally more expensive in the case of Post-Lasso because the 

weighting is usually not used for the prediction and only implicit. However, estimation based, e.g., 

on Random Forests with explicit prediction weights for each outcome should not have this issue 

and the same results can be obtained in the similar time with the weighting plus the option to inspect 

the weights. 

C.2 Assessment of balancing in high-dimensional settings 

The Appendix in standard applications contains often an extended version of Table 2 that 

shows standardized differences for all variables in the propensity score before and after adjustment. 

Such tables cover sometimes several pages but have finite length. The length of such tables would 

explode in the high-dimensional case because we do not just want to assess balance for the selected 

variables but especially want to check whether the potentially small set of selected variables also 

balances those variables that were not selected. The figures below visualize the improvement of 

balancing for all 10,066 variables. The black area shows the absolute standardized difference before 

adjustment ranked from the highest to the lowest values. The grey area shows the corresponding 

values after adjustment. As a representative example, Figures C.2.1 and C.2.2 shows balancing in 

the binary and multiple treatment case for science skills. We observe that only a minority of the 

controls show large imbalances before adjusting for selection. This observation is in favour of the 

sparsity assumption needed for the machine learning part to converge fast enough. Also the 

observation that the balancing of all variables is substantially improved by considering only a small 

                                                                 
33 Very small differences might occur due to computational machine noise. 
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subset can be interpreted as evidence for sparsity because otherwise controlling for only less than 

30 variables could result in large differences of the variables that were not included. 

Figure C.2.1: Balancing before and after adjustment for selection – binary treatment 

 

Figure C.2.2: Balancing before and after adjustment for selection – multiple treatment 
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Appendix D: Sensitivity analyses 

D.1 Sensitivity of results to penalty choice 

Table D.1.1 shows in detail how important parameters of the analysis like the number of selected 

variables, implied weights and covariate balance vary for different penalty term choices. To get an 

overview, we report the mean values of each parameter over the 13 different outcome specifications.  

The number of variables additionally selected for the predictions in the baseline is rather low. 

With nine and on average 4.5 for the propensity score in the binary and multiple treatment setting, 

respectively. The outcome predictions select on average 7.7 variables in the binary case and 4.6 in 

the multiple case. Combined with the 19 dummies, all specifications of the baseline use less than 

30 variables for prediction. The number of selected variables varies substantially with the different 

penalty choice rules. The 1SE rule leads to very sparse models with zero to three additionally 

selected variables, while the 1SE+ and 2SE+ rules increase the selected variables up to 30. 

The inspection of the implicit weights (see Appendix C) reveal no severe issues. The largest 

weight that one observation receives in percent of the total weights is on average at most 0.5% and 

always below 1%. This is far below the 4% threshold used to further trim observations, e.g., in 

Lechner and Strittmatter (2017). Another hint that the estimator produces no extreme weights is 

that the 10% largest weights make up for about 20% of the total weights indicating that the results 

are not driven by just a few observations. Another interesting exercise is to look at the number of 

negative weights that would indicate extrapolation. This is possible due to the global nature of Post-

Lasso but seems not to be a big issue. Some observations receive negative weights, especially in 

the multiple treatment case. However, the largest negative weight is -3 and therefore less than 0.1% 

of the total weight.  

Appendix C explains how we can use the calculated weights to assess covariate balancing. 

We start in the raw sample with standardized differences (SD) of potential confounders showing a 
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maximum of over 30 as well as 25% / 38% (binary / multiple) having a SD larger than 5.34 Just 

including state and school track dummies reduces the imbalances already substantially. Adding 

additional selected variables decreases the standardized differences of all potential confounders 

further. The improvements in balancing are pronounced not only for the selected variables but for 

all potential controls. This indicates that the very sparse model is already sufficient to achieve 

reasonable balancing over all potential confounders. Penalty choices leading to larger models than 

the baseline reduce the fraction of potential confounders with absolute SD larger the 5 from 2.5% / 

16% (binary / multiple) in the baseline to 1% / 12% for larger models.35 

 

                                                                 
34 Rosenbaum and Rubin (1985) consider values of above 20 as being large. 
35 Note that with more covariates than observations even methods that achieve perfect balancing of covariates (e.g., Graham, Pinto, 

& Egel, 2012, 2016; Hainmueller, 2012) could not find weights that perfectly balance all potential confounders. 
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Table D.1.1: Selected variables, weights and balancing for different penalty term choices 

  Uncond. Diff. Dummies 1SE Min 1SE+ 2SE+ 

 (1) (2) (3) (4) (5) (6) 
Binary treatment 

Number of selected variables:             
# of additional selected variables for treatment - - 3 9 17 30 
Mean # of additional selected variables for outcomes - - 1.4 7.7 17.5 24.6 
Description of weights:       
Largest weight in % of total weights - 0.2 0.3 0.3 0.3 0.4 
Fraction of largest 10% weights of total weights in % - 12.5 17.7 18.2 19.2 19.8 
Number of negative weights - 0.0 0.5 2.8 5.6 6.1 
Balancing of all 10,066 potential covariates:       
Maximum |SD| 32.7 30.3 8.6 8.0 8.0 7.5 
Mean |SD| 3.5 2.6 1.8 1.7 1.5 1.5 
Median |SD| 2.6 1.9 1.6 1.5 1.3 1.3 
Fraction of variables with |SD| > 10 in % 5.2 2.2 0.0 0.0 0.0 0.0 
Fraction of variables with |SD| > 5 in % 25.1 12.3 4.4 2.5 1.2 1.0 

Multiple treatment 
Number of selected variables:             
Mean # of additionally selected variables for treatment - - 1.0 4.5 14.8 27.5 
Mean # of additionally selected variables for outcomes - - 0.9 4.6 11.2 17.7 
Description of weights:       
Largest weight in % of total weights - 0.3 0.3 0.5 0.5 0.5 
Fraction of largest 10% weights of total weights in % - 13.9 15.9 18.2 19.8 21.0 
Number of negative weights - 6.0 17.2 24.6 76.5 108.9 
Balancing of all 10,066 potential covariates:       
Maximum |SD| 35.2 31.8 16.8 11.5 10.8 13.1 
Mean |SD| 3.2 2.4 2.2 2.1 1.9 1.9 
Median |SD| 2.4 1.9 1.9 1.7 1.6 1.6 
Fraction of variables with |SD| > 10 in % 6.5 2.8 0.9 0.1 0.04 0.03 
Fraction of variables with |SD| > 5 in % 38.3 24.5 20.1 16.2 12.2 12.6 

Note: Table shows different characteristics of the estimations for different specifications. The numbers are averages over all 
outcomes. Column (1) shows the unconditional differences, column (2) the specification with state and school track 
dummies, and columns (3) to (6) the specifications obtained from the different penalty term choices. Column (4) marks 
the baseline. |SD| means absolute standardized bias. 

Table D.1.1 above shows that increasing model complexity leads to better balancing of 

potential confounders but comes at the cost of more extreme weights. Tables D.1.2 to D.1.7 below 

investigate whether larger models actually change the estimated effects. We observe a clear pattern 

that controlling for the state and school track dummies already decreases the observed unconditional 

differences to a large extent. Adding the additional selected controls drives the differences even 

more to zero, suggesting that the variable selection picks up important confounders. However, 



49 
 

increasing the model complexity beyond the cross-validated minimum does not change the 

estimated coefficients dramatically. They vary from minimum to the 2SE+ rule specifications by at 

most one standard error of the baseline effects and the main qualitative conclusions remain valid. 

As expected from the discussion about more extreme weights, more complex models result also in 

slightly increased standard errors. 

Table D.1.2: Average treatment effects of being musically active for different penalty choices 

  Uncond. Diff. Dummies 1SE Minimum 1SE+ 2SE+ 
 (1) (2) (3) (4) (5) (6) 

Cognitive skills (standardized)      
Science 0.30*** 0.11*** 0.12*** 0.11*** 0.09*** 0.09*** 

 (0.026) (0.022) (0.022) (0.022) (0.023) (0.023) 
Math 0.23*** 0.02 0.09*** 0.08*** 0.08*** 0.07*** 

 (0.026) (0.022) (0.022) (0.022) (0.022) (0.023) 
Vocabulary 0.29*** 0.10*** 0.12*** 0.11*** 0.09*** 0.10*** 

 (0.026) (0.024) (0.024) (0.024) (0.025) (0.024) 
Reading 0.20*** 0.05** -0.02 -0.03 -0.02 -0.02 

 (0.026) (0.025) (0.026) (0.025) (0.026) (0.026) 
ICT 0.35*** 0.15*** 0.13*** 0.12*** 0.11*** 0.11*** 

 (0.026) (0.023) (0.024) (0.023) (0.024) (0.024) 
School performance (standardized)     
German grade 0.34*** 0.26*** 0.14*** 0.12*** 0.10*** 0.10*** 

 (0.026) (0.026) (0.028) (0.028) (0.030) (0.029) 
Math grade 0.11*** 0.07*** 0.06** 0.05* 0.04 0.04 

 (0.026) (0.027) (0.028) (0.028) (0.028) (0.028) 
Average grade German & math 0.26*** 0.19*** 0.11*** 0.09*** 0.08*** 0.08*** 

 (0.026) (0.027) (0.029) (0.028) (0.029) (0.029) 
Big Five (standardized)      
Extraversion 0.08*** 0.07*** 0.03 0.03 0.02 0.02 

 (0.026) (0.026) (0.027) (0.027) (0.028) (0.028) 
Agreeableness 0.13*** 0.15*** 0.11*** 0.11*** 0.11*** 0.11*** 

 (0.026) (0.027) (0.028) (0.028) (0.029) (0.029) 
Conscientiousness 0.03 0.07*** -0.04 -0.04 -0.04 -0.03 

 (0.026) (0.025) (0.026) (0.025) (0.027) (0.027) 
Neuroticism 0.07*** 0.08*** 0.000 0.001 0.005 -0.002 

 (0.026) (0.026) (0.028) (0.028) (0.030) (0.030) 
Openness 0.47*** 0.46*** 0.33*** 0.31*** 0.29*** 0.29*** 

 (0.025) (0.026) (0.027) (0.028) (0.028) (0.028) 
Note: Column (1) shows unconditional mean differences between students who play at least one day of music compared to non-

musicians, (2) shows the ATE only controlling for state and school track dummies, (3) – (6) show ATEs obtained for 
different penalty term choices for the Farrell (2015) estimator using Post-Lasso. All outcome variables are standardized 
to mean zero and variance one. Higher grades are better. State and school track dummies enter the selection 
unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** indicate statistical significance at the 
10%, 5%, 1% level, respectively. 
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Table D.1.3: Average treatment effects for Low vs. No with different penalty choices 

  Uncond. Diff. Dummies 1SE Min 1SE+ 2SE+ 
              

Cognitive skills (standardized)       
Science 0.12*** 0.00 0.05 0.04 0.03 0.03 
 (0.036) (0.034) (0.033) (0.033) (0.033) (0.034) 
Math 0.09** -0.04 0.06* 0.05 0.05 0.04 
 (0.037) (0.032) (0.031) (0.031) (0.031) (0.032) 
Vocabulary 0.10*** -0.02 0.03 0.02 0.01 0.02 
 (0.037) (0.033) (0.032) (0.031) (0.030) (0.029) 
Reading 0.17*** 0.07** 0.05 0.01 0.02 0.02 
 (0.037) (0.035) (0.036) (0.036) (0.035) (0.036) 
ICT 0.20*** 0.07** 0.05* 0.06* 0.08** 0.07** 
 (0.036) (0.032) (0.032) (0.033) (0.032) (0.031) 
School performance (standardized)      
German grade 0.26*** 0.22*** 0.11*** 0.11*** 0.09** 0.09** 
 (0.035) (0.037) (0.036) (0.036) (0.035) (0.036) 
Math grade 0.05 0.03 0.03 0.04 0.03 0.01 
 (0.036) (0.038) (0.039) (0.039) (0.039) (0.041) 
Average grade German & math 0.17*** 0.14*** 0.10*** 0.09** 0.07* 0.06 
 (0.035) (0.037) (0.038) (0.037) (0.038) (0.038) 
Big Five (standardized)       
Extraversion 0.03 0.03 0.00 0.00 -0.01 -0.01 
 (0.036) (0.038) (0.039) (0.039) (0.040) (0.040) 
Agreeableness 0.14*** 0.15*** 0.14*** 0.11*** 0.10** 0.10** 
 (0.036) (0.037) (0.038) (0.038) (0.038) (0.039) 
Conscientiousness 0.02 0.06 0.00 -0.04 -0.04 -0.03 
 (0.036) (0.037) (0.037) (0.037) (0.037) (0.039) 
Neuroticism 0.02 0.14*** 0.04 0.05 0.07* 0.06 
 (0.036) (0.038) (0.038) (0.039) (0.038) (0.040) 
Openness 0.14*** 0.29*** 0.16*** 0.13*** 0.13*** 0.12*** 
  (0.036) (0.038) (0.037) (0.038) (0.037) (0.038) 

Note: Column (1) shows unconditional mean, (2) shows the effects only controlling for state and school track dummies, (3) – (6) 
show obtained for different penalty term choices for the Farrell (2015) estimator using Post-Lasso. All outcome variables 
are standardized to mean zero and variance one. Higher grades are better. State and school track dummies enter the 
selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** indicate statistical significance 
at the 10%, 5%, 1% level, respectively. 
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Table D.1.4: Average treatment effects for Medium vs. No with different penalty choices 

  Uncond. Diff. Dummies 1SE Min 1SE+ 2SE+ 
              

Cognitive skills (standardized)       
Science 0.34*** 0.13*** 0.14*** 0.14*** 0.13*** 0.13*** 
 (0.033) (0.030) (0.030) (0.030) (0.030) (0.030) 
Math 0.26*** 0.04 0.09*** 0.12*** 0.09*** 0.08*** 
 (0.033) (0.029) (0.029) (0.029) (0.029) (0.029) 
Vocabulary 0.32*** 0.13*** 0.17*** 0.16*** 0.14*** 0.15*** 
 (0.032) (0.029) (0.029) (0.029) (0.028) (0.028) 
Reading 0.19*** 0.03 0.00 -0.04 -0.04 -0.07* 
 (0.033) (0.032) (0.032) (0.032) (0.034) (0.035) 
ICT 0.38*** 0.16*** 0.15*** 0.15*** 0.15*** 0.15*** 
 (0.033) (0.029) (0.029) (0.030) (0.031) (0.031) 
School performance (standardized)      
German grade 0.37*** 0.28*** 0.14*** 0.13*** 0.09** 0.09** 
 (0.033) (0.034) (0.033) (0.034) (0.035) (0.036) 
Math grade 0.14*** 0.10*** 0.09*** 0.08** 0.07** 0.06 
 (0.033) (0.035) (0.035) (0.036) (0.037) (0.038) 
Average grade German & math 0.29*** 0.22*** 0.14*** 0.13*** 0.08** 0.09** 
 (0.033) (0.034) (0.034) (0.035) (0.036) (0.036) 
Big Five (standardized)       
Extraversion 0.10*** 0.08** 0.06 0.04 0.06 0.04 
 (0.033) (0.035) (0.036) (0.036) (0.038) (0.040) 
Agreeableness 0.14*** 0.15*** 0.13*** 0.10*** 0.10*** 0.09** 
 (0.033) (0.035) (0.035) (0.036) (0.038) (0.039) 
Conscientiousness 0.02 0.06* -0.06* -0.06* -0.06* -0.07** 
 (0.033) (0.034) (0.034) (0.034) (0.035) (0.036) 
Neuroticism 0.08** 0.08** -0.02 -0.02 0.00 0.01 
 (0.033) (0.035) (0.035) (0.035) (0.036) (0.038) 
Openness 0.49*** 0.47*** 0.35*** 0.33*** 0.32*** 0.33*** 
  (0.032) (0.033) (0.033) (0.034) (0.035) (0.035) 

Note: Column (1) shows unconditional mean, (2) shows the effects only controlling for state and school track dummies, (3) – (6) 
show obtained for different penalty term choices for the Farrell (2015) estimator using Post-Lasso. All outcome variables 
are standardized to mean zero and variance one. Higher grades are better. State and school track dummies enter the 
selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** indicate statistical significance 
at the 10%, 5%, 1% level, respectively. 
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Table D.1.4: Average treatment effects for High vs. No with different penalty choices 

  Uncond. Diff. Dummies 1SE Min 1SE+ 2SE+ 
              

Cognitive skills (standardized)       
Science 0.44*** 0.22*** 0.23*** 0.17*** 0.17*** 0.17*** 
 (0.036) (0.035) (0.035) (0.035) (0.035) (0.036) 
Math 0.34*** 0.08** 0.13*** 0.10*** 0.10*** 0.10*** 
 (0.038) (0.036) (0.036) (0.035) (0.035) (0.033) 
Vocabulary 0.34*** 0.22*** 0.23*** 0.18*** 0.17*** 0.20*** 
 (0.036) (0.033) (0.033) (0.034) (0.033) (0.032) 
Reading 0.24*** 0.05 0.01 -0.01 -0.01 -0.02 
 (0.038) (0.039) (0.038) (0.039) (0.039) (0.039) 
ICT 0.47*** 0.23*** 0.21*** 0.18*** 0.16*** 0.16*** 
 (0.036) (0.033) (0.034) (0.035) (0.033) (0.033) 
School performance (standardized)      
German grade 0.39*** 0.28*** 0.21*** 0.16*** 0.13*** 0.11*** 
 (0.039) (0.042) (0.042) (0.042) (0.042) (0.040) 
Math grade 0.13*** 0.07* 0.07 0.04 0.01 0.02 
 (0.040) (0.043) (0.044) (0.045) (0.045) (0.045) 
Average grade German & math 0.30*** 0.20*** 0.16*** 0.10** 0.07 0.07 
 (0.040) (0.043) (0.044) (0.043) (0.043) (0.044) 
Big Five (standardized)       
Extraversion 0.11*** 0.10** 0.08* 0.07 0.06 0.05 
 (0.039) (0.043) (0.044) (0.045) (0.045) (0.045) 
Agreeableness 0.12*** 0.14*** 0.12*** 0.11*** 0.13*** 0.12*** 
 (0.039) (0.042) (0.043) (0.042) (0.043) (0.045) 
Conscientiousness 0.06 0.08* 0.00 -0.01 -0.03 -0.03 
 (0.040) (0.044) (0.042) (0.043) (0.043) (0.044) 
Neuroticism -0.02 -0.02 -0.07 -0.04 -0.02 -0.03 
 (0.039) (0.042) (0.042) (0.044) (0.044) (0.046) 
Openness 0.62*** 0.63*** 0.54*** 0.50*** 0.50*** 0.50*** 
  (0.037) (0.041) (0.041) (0.043) (0.043) (0.043) 

Note: Column (1) shows unconditional mean, (2) shows the effects only controlling for state and school track dummies, (3) – (6) 
show obtained for different penalty term choices for the Farrell (2015) estimator using Post-Lasso. All outcome variables 
are standardized to mean zero and variance one. Higher grades are better. State and school track dummies enter the 
selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** indicate statistical significance 
at the 10%, 5%, 1% level, respectively. 
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Table D.1.5: Average treatment effects for Medium vs. Low with different penalty choices 

  Uncond. Diff. Dummies 1SE Min 1SE+ 2SE+ 
              
Cognitive skills (standardized)       
Science 0.21*** 0.13*** 0.09** 0.10*** 0.10*** 0.11*** 
 (0.041) (0.038) (0.037) (0.037) (0.037) (0.037) 
Math 0.18*** 0.08** 0.03 0.07** 0.05 0.04 
 (0.042) (0.036) (0.035) (0.036) (0.035) (0.034) 
Vocabulary 0.22*** 0.14*** 0.14*** 0.13*** 0.13*** 0.13*** 
 (0.040) (0.036) (0.035) (0.034) (0.032) (0.032) 
Reading 0.02 -0.04 -0.04 -0.06 -0.06 -0.08** 
 (0.040) (0.039) (0.039) (0.040) (0.041) (0.041) 
ICT 0.17*** 0.09** 0.09** 0.09** 0.08** 0.08** 
 (0.040) (0.036) (0.036) (0.037) (0.037) (0.037) 
School performance (standardized)      
German grade 0.11*** 0.06 0.03 0.03 0.00 0.00 
 (0.040) (0.042) (0.040) (0.041) (0.040) (0.042) 
Math grade 0.09** 0.07 0.06 0.04 0.04 0.05 
 (0.041) (0.043) (0.043) (0.044) (0.045) (0.047) 
Average grade German & math 0.12*** 0.08* 0.03 0.03 0.01 0.03 
 (0.041) (0.043) (0.042) (0.043) (0.043) (0.043) 
Big Five (standardized)       
Extraversion 0.06 0.06 0.06 0.04 0.07 0.05 
 (0.041) (0.043) (0.043) (0.044) (0.046) (0.047) 
Agreeableness -0.01 0.00 0.00 -0.01 0.00 -0.01 
 (0.040) (0.042) (0.042) (0.043) (0.044) (0.044) 
Conscientiousness -0.01 0.00 -0.06 -0.02 -0.03 -0.04 
 (0.040) (0.042) (0.041) (0.042) (0.042) (0.043) 
Neuroticism -0.07 -0.06 -0.07 -0.07* -0.08* -0.06 
 (0.041) (0.043) (0.042) (0.043) (0.043) (0.044) 
Openness 0.19*** 0.18*** 0.19*** 0.19*** 0.19*** 0.21*** 
  (0.040) (0.042) (0.041) (0.042) (0.041) (0.042) 

Note: Column (1) shows unconditional mean, (2) shows the effects only controlling for state and school track dummies, (3) – (6) 
show obtained for different penalty term choices for the Farrell (2015) estimator using Post-Lasso. All outcome variables 
are standardized to mean zero and variance one. Higher grades are better. State and school track dummies enter the 
selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** indicate statistical significance 
at the 10%, 5%, 1% level, respectively. 
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Table D.1.6: Average treatment effects for High vs. Low with different penalty choices 

  Uncond. Diff. Dummies 1SE Min 1SE+ 2SE+ 
              

Cognitive skills (standardized)       
Science 0.31*** 0.22*** 0.19*** 0.13*** 0.15*** 0.15*** 
 (0.043) (0.042) (0.041) (0.042) (0.041) (0.042) 
Math 0.26*** 0.13*** 0.07* 0.05 0.05 0.07* 
 (0.046) (0.042) (0.041) (0.040) (0.040) (0.038) 
Vocabulary 0.34*** 0.23*** 0.20*** 0.15*** 0.16*** 0.18*** 
 (0.043) (0.040) (0.038) (0.038) (0.036) (0.035) 
Reading 0.07 -0.03 -0.04 -0.02 -0.02 -0.04 
 (0.045) (0.045) (0.044) (0.045) (0.045) (0.045) 
ICT 0.27*** 0.16*** 0.16*** 0.11*** 0.09** 0.09** 
 (0.042) (0.039) (0.039) (0.041) (0.038) (0.038) 
School performance (standardized)      
German grade 0.13*** 0.07 0.10** 0.05 0.05 0.02 
 (0.045) (0.049) (0.048) (0.048) (0.047) (0.045) 
Math grade 0.08* 0.04 0.04 0.00 -0.02 0.01 
 (0.047) (0.050) (0.050) (0.052) (0.051) (0.053) 
Average grade German & math 0.12*** 0.06 0.06 0.01 0.00 0.01 
 (0.047) (0.050) (0.050) (0.050) (0.050) (0.050) 
Big Five (standardized)       
Extraversion 0.08* 0.08 0.08 0.07 0.07 0.06 
 (0.046) (0.050) (0.050) (0.052) (0.052) (0.051) 
Agreeableness -0.02 -0.01 -0.01 0.01 0.03 0.02 
 (0.045) (0.049) (0.049) (0.049) (0.049) (0.050) 
Conscientiousness 0.03 0.02 0.01 0.04 0.01 0.00 
 (0.046) (0.050) (0.048) (0.049) (0.048) (0.050) 
Neuroticism -0.16*** -0.16*** -0.11** -0.10* -0.09* -0.09* 
 (0.046) (0.049) (0.049) (0.050) (0.050) (0.051) 
Openness 0.33*** 0.34*** 0.38*** 0.37*** 0.37*** 0.38*** 
  (0.044) (0.048) (0.048) (0.049) (0.048) (0.048) 

Note: Column (1) shows unconditional mean, (2) shows the effects only controlling for state and school track dummies, (3) – (6) 
show obtained for different penalty term choices for the Farrell (2015) estimator using Post-Lasso. All outcome variables 
are standardized to mean zero and variance one. Higher grades are better. State and school track dummies enter the 
selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** indicate statistical significance 
at the 10%, 5%, 1% level, respectively. 
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Table D.1.7: Average treatment effects for High vs. Medium with different penalty choices 

  Uncond. Diff. Dummies 1SE Min 1SE+ 2SE+ 
              

Cognitive skills (standardized)       
Science 0.10** 0.09** 0.10** 0.03 0.04 0.04 
 (0.041) (0.039) (0.039) (0.039) (0.038) (0.038) 
Math 0.08* 0.04 0.04 -0.02 0.00 0.02 
 (0.043) (0.040) (0.040) (0.038) (0.038) (0.035) 
Vocabulary 0.12*** 0.09** 0.06* 0.02 0.03 0.05 
 (0.039) (0.037) (0.035) (0.036) (0.035) (0.034) 
Reading 0.05 0.02 0.00 0.03 0.04 0.05 
 (0.042) (0.043) (0.042) (0.042) (0.044) (0.044) 
ICT 0.09** 0.07* 0.07* 0.03 0.01 0.01 
 (0.040) (0.037) (0.037) (0.039) (0.037) (0.038) 
School performance (standardized)      
German grade 0.02 0.00 0.07 0.03 0.04 0.02 
 (0.044) (0.046) (0.046) (0.046) (0.046) (0.045) 
Math grade -0.01 -0.03 -0.02 -0.04 -0.06 -0.04 
 (0.044) (0.048) (0.048) (0.050) (0.049) (0.050) 
Average grade German & math 0.01 -0.02 0.03 -0.03 -0.02 -0.02 
 (0.045) (0.048) (0.047) (0.048) (0.048) (0.048) 
Big Five (standardized)       
Extraversion 0.01 0.02 0.02 0.02 0.00 0.01 
 (0.044) (0.048) (0.048) (0.050) (0.051) (0.051) 
Agreeableness -0.01 -0.01 -0.01 0.01 0.02 0.03 
 (0.043) (0.047) (0.047) (0.047) (0.048) (0.049) 
Conscientiousness 0.03 0.02 0.07 0.05 0.03 0.04 
 (0.044) (0.048) (0.046) (0.047) (0.047) (0.047) 
Neuroticism -0.09** -0.10** -0.05 -0.02 -0.02 -0.04 
 (0.043) (0.046) (0.046) (0.048) (0.049) (0.049) 
Openness 0.14*** 0.16*** 0.19*** 0.18*** 0.18*** 0.17*** 
  (0.041) (0.045) (0.045) (0.047) (0.046) (0.046) 

Note: Column (1) shows unconditional mean, (2) shows the effects only controlling for state and school track dummies, (3) – (6) 
show obtained for different penalty term choices for the Farrell (2015) estimator using Post-Lasso. All outcome variables 
are standardized to mean zero and variance one. Higher grades are better. State and school track dummies enter the 
selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** indicate statistical significance 
at the 10%, 5%, 1% level, respectively.  
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D.2 Anatomy of double machine learning weights 

Table D.2.1 reports the average correlations between the different weights in the weighted 

representation of equation (2), 𝜇𝜇𝑡𝑡 = 𝐸𝐸�𝑌𝑌𝑡𝑡�𝐿𝐿𝑡𝑡
𝑝𝑝 + 𝐿𝐿𝑡𝑡

𝑌𝑌 − 𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌�� = 𝐸𝐸[𝑌𝑌𝑡𝑡𝐿𝐿𝑡𝑡]. It shows that the DML 

weights (𝐿𝐿𝑡𝑡) in this application are mostly driven by IPW weights (𝐿𝐿𝑡𝑡
𝑝𝑝). DML and IPW weights 

are highly correlated with an average correlation of 0.99 for the binary and the multiple treatment 

case. However, also the RA weights (𝐿𝐿𝑡𝑡
𝑌𝑌) show high correlations with DML weights with 0.77 and 

0.89 for the binary and the multiple treatment case, respectively. The explanation is that IPW and 

RA mostly agree on how to weight the outcomes to estimate the causal effect with correlations of 

0.76 and 0.87 for the binary and the multiple treatment case, respectively. The adjustment weight 

(𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌) that is subtracted is highly correlated with the RA weights (0.99). 

Table D.2.1: Average correlation of DML weights and its components 

 Binary  Multiple 

 𝐿𝐿𝑡𝑡  𝐿𝐿𝑡𝑡
𝑝𝑝 𝐿𝐿𝑡𝑡𝑌𝑌  𝐿𝐿𝑡𝑡

𝑝𝑝𝑌𝑌   𝐿𝐿𝑡𝑡  𝐿𝐿𝑡𝑡
𝑝𝑝 𝐿𝐿𝑡𝑡𝑌𝑌  𝐿𝐿𝑡𝑡

𝑝𝑝𝑌𝑌  
𝐿𝐿𝑡𝑡  1.00     1.00    
𝐿𝐿𝑡𝑡
𝑝𝑝 0.99 1.00    0.99 1.00   

𝐿𝐿𝑡𝑡𝑌𝑌  0.77 0.76 1.00   0.89 0.87 1.00  
𝐿𝐿𝑡𝑡
𝑝𝑝𝑌𝑌  0.76 0.77 0.99 1.00  0.88 0.88 0.99 1.00 

Note: This table shows the average correlations between the different weights derived in 
Appendix C over all 13 outcomes shown in Table 3. The results are obtained by 
applying the Farrell (2015) estimator using Post-Lasso with penalty chosen at the 
minimum of 10-fold cross-validated MSE.  

In a second step, we investigate the balancing properties of DML, IPW and RA separately 

in Table D.2.2. As expected from the correlations above, the balancing of DML and IPW weights 

are nearly identical. However, the DML balancing is for most indicators slightly better. In contrast, 

balancing of RA is substantially worse. This shows that DML has good reasons to rely mostly on 

IPW weights and to offset the influence of RA weights by subtracting it with the adjustment 

weights. 
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Table D.2.2: Balancing of DML, IPW and RA weights 

 Binary  Multiple 

 𝐿𝐿𝑡𝑡  𝐿𝐿𝑡𝑡
𝑝𝑝 𝐿𝐿𝑡𝑡𝑌𝑌   𝐿𝐿𝑡𝑡  𝐿𝐿𝑡𝑡

𝑝𝑝 𝐿𝐿𝑡𝑡𝑌𝑌  
Maximum |SD| 8.0 8.2 19.9  11.5 11.1 23.2 
Mean |SD| 1.7 1.8 2.4  2.0 2.1 2.3 
Median |SD| 1.5 1.6 1.9  2.1 2.1 2.2 
Fraction of variables with |SD| > 10 in % 0.0 0.0 1.0  0.1 0.1 1.5 
Fraction of variables with |SD| > 5 in % 2.5 2.8 9.2  16.2 17.0 21.8 

Note: This table compares the average balancing results obtained from the different 
weights derived in Appendix C over all 13 outcomes shown in Table 3. The results 
are obtained by applying the Farrell (2015) estimator using Post-Lasso with 
penalty chosen at the minimum of 10-fold cross-validated MSE. |SD| means 
absolute standardized bias. 

 
 
 

D.3: Further sensitivity analyses 

D.3.1 Potentially endogenous controls 

Section 4.1 discusses the concern that some of the available controls in the NEPS data might be 

themselves outcomes and are therefore excluded from the main specification. Table D.3.1 shows 

the results if those variables are included in the set of potential variables. Besides the marginally 

significant effect in math grades becoming insignificant, no striking differences relative to the main 

results in Table 3 are observed. 
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Table D.3.1: Results including potentially endogenous control variables 

  Binary   Multiple 

 Any - No   
Low – 

No Med - No High - No Med - Low High - Low High - Med 
                  

Cognitive Skills (standardized)       
Science 0.10***  0.04 0.13*** 0.18*** 0.09** 0.13*** 0.04 
 (0.02)  (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 
Math 0.07***  0.05 0.10*** 0.09*** 0.05 0.04 -0.01 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
Vocabulary 0.10***  0.01 0.16*** 0.18*** 0.14*** 0.17*** 0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Reading -0.02  0.02 -0.04 0.00 -0.06 -0.02 0.04 
 (0.02)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
ICT 0.12***  0.06** 0.15*** 0.17*** 0.09*** 0.11*** 0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
School performance  (standardized)       
German grade 0.11***  0.09*** 0.12*** 0.15*** 0.03 0.06 0.03 
 (0.03)  (0.03) (0.03) (0.04) (0.04) (0.05) (0.04) 
Math grade 0.02  0.01 0.05 0.02 0.03 0.01 -0.03 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Average grade German & math 0.06**  0.06 0.07** 0.08** 0.02 0.03 0.01 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
Big Five  (standardized)        
Extraversion 0.03  0.00 0.04 0.07 0.04 0.07 0.03 
 (0.03)  (0.04) (0.04) (0.05) (0.04) (0.05) (0.05) 
Agreeableness 0.09***  0.10*** 0.08** 0.12*** -0.02 0.02 0.04 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Conscientiousness -0.05**  -0.05 -0.06* -0.01 -0.01 0.04 0.05 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Neuroticism -0.01  0.05 -0.03 -0.03 -0.07* -0.08 -0.01 
 (0.03)  (0.04) (0.04) (0.05) (0.04) (0.05) (0.05) 
Openness 0.31***  0.14*** 0.32*** 0.50*** 0.18*** 0.36*** 0.18*** 
  (0.03)   (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 

Note: This table shows the estimated effects comparing different intensities of musical practice. All outcome variables are 
standardized to mean zero and variance one. Higher grades are better. The results are obtained by applying the Farrell 
(2015) estimator using Post-Lasso with penalty chosen at the minimum of 10-fold cross-validated MSE. State and school 
track dummies enter the selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** 
indicate statistical significance at the 10%, 5%, 1% level, respectively. 
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D.3.2 Different control groups 

We check the sensitivity of the results to the choice of the group of non-musicians. Table 

D.3.2.1 shows the results using all students, not only extracurricularly active students. Table D.3.2.2 

compares musicians to non-musicians doing sports as in Cabane et al. (2016).  

We find some minor differences for the full sample approach in Table 2.2.1. The effects for 

grades are larger and especially for math grades highly significant. Further, extraversion now shows 

significantly positive effects. There are two potential explanations for this observation. (i) We are 

not able to control for the first selection step into being active at all, because we do not observe 

early personality traits that lead to extracurricular activities. This seems to be a valid concern as 

early extraversion could be a main driver into extracurricular activities and is not sufficiently 

controlled when including completely inactive students. Therefore, following the arguments of 

Cabane et al. (2016) and excluding inactive students seems to be crucial. (ii) Heterogeneous effects 

could also lead to differences. This would mean that students without any extracurricular activities 

have substantially higher positive effects of music on grades and extraversion. 

Restricting the control group of non-musicians to sporty students in Table D.3.2.2 changes 

the estimated effects only marginally.  
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Table D.3.2.1: Results using all students in the analysis 

  Binary   Multiple 

 Any - No  Low - No Med - No High - No Med - Low High - Low High - Med 
                  

Cognitive Skills (standardized)       
Science 0.10***  0.03 0.13*** 0.17*** 0.10*** 0.14*** 0.04 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
Math 0.09***  0.08*** 0.14*** 0.14*** 0.06* 0.06 0.00 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Vocabulary 0.09***  0.01 0.15*** 0.17*** 0.14*** 0.16*** 0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Reading -0.02  0.02 -0.04 -0.02 -0.06 -0.03 0.02 
 (0.02)  (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 
ICT 0.09***  0.04 0.13*** 0.17*** 0.09** 0.13*** 0.04 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
School performance (standardized)       
German grade 0.15***  0.14*** 0.16*** 0.17*** 0.02 0.03 0.01 
 (0.03)  (0.03) (0.03) (0.04) (0.04) (0.05) (0.04) 
Math grade 0.10***  0.10*** 0.13*** 0.08* 0.03 -0.02 -0.05 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Average grade German & math 0.14***  0.15*** 0.18*** 0.12*** 0.02 -0.04 -0.06 
 (0.03)  (0.03) (0.03) (0.04) (0.04) (0.05) (0.05) 
Big Five (standardized)        
Extraversion 0.06***  0.05 0.08** 0.09** 0.03 0.04 0.01 
 (0.02)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Agreeableness 0.13***  0.12*** 0.11*** 0.14*** -0.01 0.01 0.02 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Conscientiousness 0.01  0.01 -0.02 0.03 -0.03 0.03 0.06 
 (0.02)  (0.03) (0.03) (0.04) (0.04) (0.05) (0.05) 
Neuroticism -0.01  0.04 -0.04 -0.05 -0.07* -0.08* -0.01 
 (0.03)  (0.03) (0.03) (0.04) (0.04) (0.05) (0.05) 
Openness 0.30***  0.14*** 0.33*** 0.49*** 0.19*** 0.35*** 0.17*** 
  (0.03)   (0.03) (0.03) (0.04) (0.04) (0.05) (0.05) 
(Mean) # of selected variables for treatment 21  7.0 
Mean # of selected variables for outcomes 10.5  5.9 
# of observations trimmed 12   76 

Note: This table shows the estimated effects comparing different intensities of musical practice using 6,898 students. All outcome 
variables are standardized to mean zero and variance one. Higher grades are better. The results are obtained by 
applying the Farrell (2015) estimator using Post-Lasso with penalty chosen at the minimum of 10-fold cross-validated 
MSE. State and school track dummies enter the selection unpenalized. Standard errors in brackets are clustered at 
school level.  *, **, *** indicate statistical significance at the 10%, 5%, 1% level, respectively. 
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Table D.3.2.2: Results using only children being active in sports as control group 

  Binary   Multiple 

 Any - No   Low - No Med - No High - No Med - Low High - Low High - Med 
                  

Cognitive Skills (standardized)       
Science 0.13***  0.06* 0.18*** 0.20*** 0.12*** 0.14*** 0.02 
 (0.02)  (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 
Math 0.07**  0.05 0.12*** 0.10*** 0.07* 0.05 -0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
Vocabulary 0.13***  0.03 0.17*** 0.19*** 0.13*** 0.16*** 0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Reading -0.03  0.01 -0.04 -0.02*** -0.05 -0.03 0.02 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) 
ICT 0.14***  0.08*** 0.18*** 0.19*** 0.09** 0.11*** 0.01 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
School performance (standardized)       
German grade 0.11***  0.09** 0.12*** 0.15*** 0.03 0.06 0.03 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Math grade 0.04  0.02 0.00 0.02 0.05 0.00 -0.05 
 (0.03)  (0.04) (0.00) (0.04) (0.04) (0.05) (0.05) 
Average grade German & math 0.08**  0.00 0.00 0.08* 0.04 0.00 -0.03 
 (0.03)  (0.00) (0.00) (0.04) (0.04) (0.05) (0.05) 
Big Five (standardized)        
Extraversion 0.00  -0.02 0.02 0.05 0.04 0.07 0.03 
 (0.03)  (0.04) (0.04) (0.05) (0.04) (0.05) (0.05) 
Agreeableness 0.12***  0.12*** 0.11*** 0.12*** -0.01 0.00 0.01 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Conscientiousness -0.04  -0.04 -0.05 0.00 -0.01 0.04 0.05 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Neuroticism 0.01  0.05 -0.02 -0.04 -0.07** -0.10* -0.02 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Openness 0.33***  0.15*** 0.35*** 0.52*** 0.19*** 0.36*** 0.17*** 
  (0.03)   (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 

Note: This table shows the estimated effects comparing different intensities of musical practice using 5,611 students. All outcome 
variables are standardized to mean zero and variance one. Higher grades are better. The results are obtained by 
applying the Farrell (2015) estimator using Post-Lasso with penalty chosen at the minimum of 10-fold cross-validated 
MSE. State and school track dummies enter the selection unpenalized. Standard errors in brackets are clustered at 
school level.  *, **, *** indicate statistical significance at the 10%, 5%, 1% level, respectively. 

D.3.3 Different common support enforcement 

This subsection investigates the sensitivity of the results to different common support adjustments 

compared to the baseline rule explained in section E.2. Table D.3.3.1 shows only minor changes 

when no common support adjustment is carried out at all. Also trimming more aggressively than 

the baseline minimum / maximum rule leaves the results nearly unchanged. Table D.3.3.2 provides 
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according results for trimming at the highest 1st and lowest 99th percentile of the propensity scores. 

This leads to overall trimming of more than 10% in the multiple treatment case. 

Table D.3.3.1: Main results without enforcing common support 

  Binary   Multiple 

 Any - No  Low - No Med - No High - No Med - Low High - Low High - Med 
                  

Cognitive Skills (standardized)       
Science 0.10***  0.03 0.13*** 0.17*** 0.10*** 0.14*** 0.04 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
Math 0.08***  0.05* 0.12*** 0.10*** 0.07* 0.05 -0.01 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Vocabulary 0.11***  0.01 0.15*** 0.19*** 0.14*** 0.17*** 0.03 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) 
Reading -0.03  0.01 -0.05 -0.02 -0.06 -0.03 0.03 
 (0.03)  (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 
ICT 0.11***  0.06* 0.15*** 0.18*** 0.09*** 0.12*** 0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
School performance (standardized)       
German grade 0.12***  0.10*** 0.13*** 0.15*** 0.03 0.05 0.02 
 (0.03)  (0.03) (0.03) (0.04) (0.04) (0.05) (0.04) 
Math grade 0.05*  0.13*** 0.07** 0.03 0.04 -0.01 -0.05 
 (0.03)  (0.03) (0.04) (0.04) (0.04) (0.05) (0.05) 
Average grade German & math 0.09***  0.09** 0.10*** 0.08* 0.02 -0.01 -0.02 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
Big Five (standardized)        
Extraversion 0.03  0.01 0.06 0.06 0.05 0.05 0.00 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Agreeableness 0.11***  0.10*** 0.10*** 0.11*** 0.00 0.01 0.01 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Conscientiousness -0.04  -0.05 -0.06* -0.01 -0.01 0.04 0.05 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Neuroticism 0.00  0.05 -0.02 -0.04 -0.07* -0.09* -0.02 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Openness 0.31***  0.14*** 0.33*** 0.50*** 0.19*** 0.36*** 0.17*** 
  (0.03)   (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
(Mean) # of selected variables for treatment 9  4.5 
Mean # of selected variables for outcomes 9.4  4.7 
# of observations trimmed 0   0 

Note: This table shows the estimated effects comparing different intensities of musical practice. All outcome variables are 
standardized to mean zero and variance one. Higher grades are better. The results are obtained by applying the Farrell 
(2015) estimator using Post-Lasso with penalty chosen at the minimum of 10-fold cross-validated MSE. State and school 
track dummies enter the selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** 
indicate statistical significance at the 10%, 5%, 1% level, respectively. 
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Table D.3.3.2: Main results with trimming at the 1st and 99th percentile 

  Binary   Multiple 

 Any - No  Low - No Med - No High - No Med - Low High - Low High - Med 
                  

Cognitive Skills (standardized)       
Science 0.11***  0.04 0.15*** 0.17*** 0.11*** 0.13*** 0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
Math 0.09***  0.05* 0.14*** 0.10*** 0.09*** 0.05 -0.05 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Vocabulary 0.11***  0.01 0.15*** 0.18*** 0.14*** 0.17*** 0.03 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Reading -0.03  0.00 -0.04 0.00 -0.05 0.00 0.04 
 (0.02)  (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) 
ICT 0.13***  0.05* 0.17*** 0.18*** 0.11*** 0.12*** 0.01 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
School performance (standardized)       
German grade 0.11***  0.10*** 0.12*** 0.16*** 0.02 0.06 0.04 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
Math grade 0.06**  0.04 0.08** 0.03 0.04 0.00 -0.05 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Average grade German & math 0.09***  0.08** 0.12*** 0.09** 0.03 0.01 -0.03 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
Big Five  (standardized)        
Extraversion 0.02  0.02 0.07* 0.07* 0.05 0.05 0.00 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Agreeableness 0.10***  0.10*** 0.10*** 0.11*** 0.00 0.01 0.01 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Conscientiousness -0.04*  -0.06* -0.08** 0.01 -0.01 0.07 0.09* 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Neuroticism 0.01  0.06* -0.03 -0.04 -0.09** -0.11** -0.02 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Openness 0.32***  0.16*** 0.37*** 0.52*** 0.21*** 0.36*** 0.15*** 
  (0.03)   (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
(Mean) # of selected variables for treatment 9  4.5 
Mean # of selected variables for outcomes 8.5  4.4 
# of observations trimmed 304   744 

Note: This table shows the estimated effects comparing different intensities of musical practice. All outcome variables are 
standardized to mean zero and variance one. Higher grades are better. The results are obtained by applying the Farrell 
(2015) estimator using Post-Lasso with penalty chosen at the minimum of 10-fold cross-validated MSE. State and school 
track dummies enter the selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** 
indicate statistical significance at the 10%, 5%, 1% level, respectively. 
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D.3.4 No state and school track dummies fix in the model 

The baseline analysis leaves state and school track dummies unpenalized. This means they are fixed 

in the models and only additional variables are selected. The idea is to provide the estimator crucial 

information derived from knowledge about the institutional background saying that states and 

especially different school tracks might differ substantially. The results in Table D.3.4.1 show that 

this is not necessary. While the baseline model starts out with 19 dummies included and adds 

variables, the unpenalized version selects even less than a total of 19 variables. Still the obtained 

results are remarkably similar to the baseline. 
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Table D.3.4.1: Baseline results with no variables fix in the model 

  Binary   Multiple 

 Any - No  Low - No Med - No High - No Med - Low High - Low High - Med 
                  

Cognitive Skills (standardized)       
Science 0.11***  0.05 0.15*** 0.17*** 0.10** 0.12*** 0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
Math 0.09***  0.07** 0.11*** 0.13*** 0.04 0.06 0.02 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Vocabulary 0.11***  0.02 0.15*** 0.21*** 0.13*** 0.19*** 0.06 
 (0.03)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Reading -0.01  0.03 -0.04 0.00 -0.07 -0.03 0.04 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) 
ICT 0.14***  0.08** 0.16*** 0.19*** 0.08* 0.11*** 0.03 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
School performance (standardized)       
German grade 0.12***  0.10*** 0.19*** 0.14*** 0.03 0.04 0.01 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
Math grade 0.05*  0.04 0.13*** 0.03 0.03 -0.01 -0.04 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Average grade German & math 0.10***  0.09** 0.11*** 0.09** 0.03 0.00 -0.03 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
Big Five (standardized)        
Extraversion 0.03  0.00 0.04 0.05 0.04 0.05 0.01 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Agreeableness 0.12***  0.12*** 0.11*** 0.12*** 0.00 0.00 0.00 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Conscientiousness -0.04  -0.04 -0.06 0.00 -0.02 0.04 0.06 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Neuroticism 0.001  0.05 -0.01 -0.04 -0.06 -0.09* -0.03 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Openness 0.30***  0.14*** 0.33*** 0.49*** 0.19*** 0.35*** 0.16*** 
  (0.03)   (0.04) (0.03) (0.04) (0.04) (0.05) (0.04) 
(Mean) # of selected variables for treatment 15  12.3 
Mean # of selected variables for outcomes 7.8  6.2 
# of observations trimmed 11   38 

Note: This table shows the estimated effects comparing different intensities of musical practice. All outcome variables are 
standardized to mean zero and variance one. Higher grades are better. The results are obtained by applying the Farrell 
(2015) estimator using Post-Lasso with penalty chosen at the minimum of 10-fold cross-validated MSE. Standard errors 
in brackets are clustered at school level.  *, **, *** indicate statistical significance at the 10%, 5%, 1% level, respectively. 
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D.3.5 Only main effects considered in the analysis 

The main analysis considers more than 10,000 covariates including interactions and polynomials to 

allow for flexible modelling. This sensitivity check investigates whether blowing up number of 

covariates makes a substantial difference compared to the inclusion of only main effects. Table 

D.3.5.1 shows the results when only the 328 main effects and 532 school dummies are available for 

the model selection. The estimates are very similar to the main results. This suggests that the 

increased flexibility does not change much and main effects are sufficient to provide a good 

approximation of the underlying functional forms of the treatments and outcomes in this 

application.  
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Table D.3.5.1: Baseline results with only main effects considered 

  Binary   Multiple 

 Any - No  Low - No Med - No High - No Med - Low High - Low High - Med 
                  

Cognitive Skills (standardized)       
Science 0.10***  0.03 0.13*** 0.18*** 0.09** 0.14*** 0.05 
 (0.02)  (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) 
Math 0.07***  0.05 0.09*** 0.11*** 0.05 0.06 0.01 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Vocabulary 0.11***  0.02 0.15*** 0.19*** 0.13*** 0.17*** 0.05 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
Reading -0.03  0.00 -0.04 -0.01 -0.05 -0.01 0.03 
 (0.03)  (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 
ICT 0.12***  0.06** 0.15*** 0.19*** 0.08** 0.12*** 0.04 
 (0.02)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) 
School performance (standardized)       
German grade 0.11***  0.09*** 0.11*** 0.15*** 0.02 0.06 0.05 
 (0.03)  (0.03) (0.03) (0.04) (0.04) (0.05) (0.04) 
Math grade 0.06**  0.02 0.08** 0.02 0.05 0.00 -0.05 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Average grade German & math 0.09***  0.08** 0.11*** 0.10** 0.03 0.02 -0.01 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Big Five (standardized)        
Extraversion 0.03  0.03 0.04 0.05 0.02 0.03 0.01 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Agreeableness 0.10***  0.10*** 0.09** 0.11*** -0.01 0.01 0.02 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Conscientiousness -0.03  -0.03 -0.06* -0.02 -0.02 0.02 0.04 
 (0.03)  (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
Neuroticism 0.00  0.04 -0.02 -0.05 -0.06 -0.09* -0.03 
 (0.03)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 
Openness 0.31***  0.15*** 0.32*** 0.49*** 0.17*** 0.34*** 0.17*** 
  (0.03)   (0.04) (0.03) (0.04) (0.04) (0.05) (0.05) 
(Mean) # of selected variables for treatment 13  6.0 
Mean # of selected variables for outcomes 8.4  4.2 
# of observations trimmed 9   46 

Note: This table shows the estimated effects comparing different intensities of musical practice. All outcome variables are 
standardized to mean zero and variance one. Higher grades are better. The results are obtained by applying the Farrell 
(2015) estimator using Post-Lasso with penalty chosen at the minimum of 10-fold cross-validated MSE. State and school 
track dummies enter the selection unpenalized. Standard errors in brackets are clustered at school level.  *, **, *** 
indicate statistical significance at the 10%, 5%, 1% level, respectively. 
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Appendix E: Propensity score and common support 

E.1 Propensity score 

Table E.1.1 shows the average marginal effects of the additionally selected variables for the 

propensity scores. They should be interpreted with caution as they were only chosen to optimize 

prediction. However, it is interesting to see that mainly interactions with gender and the availability 

of cultural books in households are selected as most predictive for different intensities of music. 

This suggests that gender and parental tastes are the main drivers into playing music at least after 

controlling for information contained in state and school track dummies. 



69 
 

Table E.1.1: Average marginal effects of the additionally selected variables in the propensity 
score estimations of the baseline 

Binary treatment 

 
Average marginal 

effects S.E. 
Selected variables Any vs. No   
Biological mother, adoptive mother, foster mother in HH * student female 0.04 (0.03) 
HH size * student female 0.02*** (0.01) 
More than 500 books in HH * books with poems in HH 0.10*** (0.02) 
Desk to study in HH * student female 0.02 (0.06) 
Room just for student in HH * classic literature in HH 0.03 (0.03) 
Room just for student in HH * student female 0.03 (0.04) 
Classic literature in HH * books with poems in HH 0.08*** (0.03) 
Classic literature in HH * works of art in HH 0.05** (0.02) 
Books with poems in HH * student female 0.03 (0.02) 

Multiple treatment 

 
Average marginal 

effects S.E. 
Selected variables No vs. rest (Any)   

Like Any vs. No above but with negative coefficients 
   
Selected variables Low vs. rest   
Books useful for homework in HH * student female 0.08*** (0.01) 
   
Selected variables Medium vs. rest   
HH size * student female 0.01*** (0.004) 
Books with poems in HH * student female 0.06*** (0.02) 
   
Selected variables High vs. rest   
Books with poems in HH * classic literature in HH 0.03** (0.01) 
Assets in HH: savings book * classic literature in HH 0.03 (0.02) 
More than 500 books in HH * mum higher tertiary education 0.04* (0.02) 
More than 500 books in HH * books with poems in HH 0.03** (0.02) 
Parents in favor of gender equality for vocational training * classic literature in HH 0.10*** (0.02) 
Classic literature in HH * books with poems in HH 0.03* (0.02) 

Note:  The estimation is based on Post-Lasso Logit models using the respective selected additional variables in the baseline 
analysis as well as school track and state dummies that are omitted due to space and confidentiality reasons. All shown 
variables are interaction terms. We obtain standard errors (S.E.) from a clustered bootstrap at school level with 4,999 
replications. *, **, *** mean statistically different from zero at the 10%, 5%, 1% level, respectively. HH is the abbreviation 
for household. 
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E.2 Common support 

We enforce common support by trimming all observations with propensity scores below the largest 

minimum propensity score in the different treatment groups as well as propensity scores above the 

smallest maximum propensity score in the different treatment groups. For the binary treatment, 

Figure E.2.1 shows that common support is not an issue in our application.  

Figure E.2.1: Overlap of the propensity score for the baseline with binary treatment 

 
Note: Histogram of propensity score based on Post-Lasso Logit with penalty chosen at the minimum of 10-fold cross-validated 

MSE. Binwidth 0.01. Dashed lines show the lower and upper threshold of trimming 

The illustration of an overlap of four different propensity scores in the multiple treatment 

setting is too confusing and therefore not shown graphically. However, Table E.2.1 reports the 

number of observations trimmed in binary and multiple treatment settings. At the baseline only 

seven and 37 observations are off support and trimmed, respectively. But also for the specification 

with many more variables obtained from the 2SE+ rule, at most 235 (4%) of the observations are 

trimmed. 
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Table E.2.1: Observations dropped to enforce common support for different penalty term choices 

# of observations dropped to enforce common support Dummies 1SE Min 1SE+ 2SE+ 
Binary treatment 0 1 7 22 21 
Multiple treatment 8 23 39 162 235 

 
Common support is enforced after prediction of the outcomes. Another possibility would be 

to trim before predicting the outcomes such that only the outcome is approximated only in 

“relevant” regions of the covariate space, which could improve efficiency. However, our case where 

different penalty term choices lead to different samples would require separate outcome predictions 

for each penalty. This possibility is neglected for computational reasons. An investigation of how 

and at which point of the estimation procedure common support should be enforced is left for further 

research. 
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